New chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complexes are identified as octahedral for (Rh & Pt) complexes and for (Au) complex square planner. The newly prepared compounds were designed and efficiently synthesized to be used to investigation of their toxicity bioassay (in vitro) as anticancer agent towards MDA cell lines. From the results obtained from cytotoxic assay, it can be concluded that the synthesized compounds are promising as new anticancer candidates in future especially in high concentration.
SYNTHESIS AND CHARACTERISATION OF NEWCo(II), Zn(II) AND Cd(II) COMPLEXES DERIVED FROM OXADIAZOLE LIGAND AND 1,10-PHENANTHROLINE AS Co-LIGAND
Chloroacetamide derivatives (2a-g) have been prepared through reaction of chloroacetyl chloride(1) (which prepared by the reaction of chloroacetic acid with thionyl chloride) with primary aromatic amines and sulfa compounds to afford compounds (2a-g) which then reacted with p-hydroxy benzaldehyde via Williamson reaction to obtaine the new compounds 2-(4-formyl phenoxy)-N-aryl acetamide (3a-g). Finally , compounds (3a-g) will be use as a good synthon to prepare the Schiff bases represented by compounds 2-(4-aryliminophenoxy)-N-arylacetamide (4a-g). through , reaction with some primary aromatic amine. All the prepared compounds were investigated by the available physical and spectroscopic methods.
This study synthesized polyacetal from the reaction of polyvinyl alcohol with para-nitrobenzaldehyde. Polyacetal/polyvinylpyrrolidone polymer blends were prepared using solution casting. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were biosynthesized using onion peel extract as the reducing agent. Nanocomposites were fabricated by blending polyacetal/PVP with AuNPs and AgNPs at different ratios. XRD and FESEM characterized the AuNPs and AgNPs. FTIR, FESEM, TGA, and DSC characterized the polyacetal, polymer blends, and nanocomposites. DSC and TGA confirmed the improved thermal stability of the polymer blends and nanocomposites. Nanocomposites demonstrated higher efficacy in inhibiting lung cancer cell lines compared t
... Show MoreA series of Schiff bases linked to phthalimidyl phenyl sulfonate moiety have been synthesized via multistep synthesis. The first step involved reaction of phthalic anhydride with aniline producing N-phenyl phthalamic acid which was subsequently dehydrated to the corresponding N-phenyl phthalimide via treatment with acetic anhydride and anhydrous sodium acetate. The synthesized imide was treated with chlorosulfonic acid in the third step producing 4-(N-phthalimidyl) phenyl sulfonyl chloride which was introduced in reaction with 4-hydroxy acetophenone in the fourth step producing 4-[4-(N-phthalimidyl) phenyl sulfonate] acetophenone and this in turn was introduced successfully in condensation reaction with various aromatic primary amines affor
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
In this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show More