It is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respectively, and the molar absorptivity was 0.7926×104 and 0.5466×104 L.mol-1.cm-1. The Flow Injection Analysis (FIA) method is used to estimate ceftazidime and in the second procedure record measurements using the UV-Visible approach. The Flow injection allows for exact drug estimation under ideal experimental conditions. The concentrations were in the range of (3-50) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 0.8102, 1. 2809µg.ml-1, and the molar absorptivity was 0.9565×104 ,0.7106×104 L.mol-1.cm-1, respectively. The proposed two methods for determination Ceftazidime in Pharmaceutical formulation were successfully applied, as these methods were characterized by simplicity, speed, accuracy, and low cost.
The drug promethazine hydrochloride (PRZH) forms with rhodium (II) a colored chelate (?max = 472 nm) complex at (pH = 2.1) which is extractable with benzyl alcohol as organic solvent. Under the appropriate experimental conditions a calibration plot was set up from which some analytical parameter were derived and deduced by regression. Standard addition procedure was also adopted. It has been estimated that the concentration of the drug PRZH to be 24.89 mg per unit and 24.19 mg per unit for both calibrations. Under optimal conditions, the developed method has been achieved the following characteristics: LDR (30 – 150 µg ml-1 ) PRZH , RSD % ( 0.6 – 2.47 ) , sandell sensitivity( 0.0844 µg. cm -2 ) , LOD ( 1.66 µgml-1 ) , recovery
... Show MoreA simple, fast, selective of a new flow injection analysis method coupled with potentiometric detection was used to determine vitamin B1 in pharmaceutical formulations via the prepared new selective membranes. Two electrodes were constructed for the determination of vitamin B1 based on the ion-pair vitamin B1-phosphotungestic acid (B1-PTA) in a poly (vinyl chloride) supported with a plasticized di-butyl phthalate (DBPH) and di-butyl phosphate (DBP). Applications of these ion selective electrodes for the determination of vitamin B1 in the pharmaceutical preparations for batch and flow injection systems were described. The ion selective membrane exhibited a near-Nernstian slope values 56.88 and 58.53 mV / decade, with the linear dy
... Show MoreIn this study, four different spectrophotometric methods were applied for determination of cimetidine and erythromycin ethylsuccinate drugs in pure form and in their pharmaceutical preparations. The suggested methods are simple, sensitive, accurate, not time consuming and inexpensive. The results showed the following: The first method: Based on the formation of ion pair complex of each drug with bromothymol blue (BTB) as a chromogenic reagent. The formed complexes were extracted with chloroform and their absorbance values were measured at 427.5 nm for cimetidine and 416.5nm for erythromycin ethylsuccinate; against their reagents blanks. Two different methods, univariate method and multivariate method, were used to obtain the optimum condit
... Show MoreThe proposed method is sensitive, simple , fast for the determination of mebeverine hydrochloride in pure form or in pharmaceutical dosage . Using Homemade instrument fluorimeter continuous flow injection analyser with solid state laser (405 nm) as a source. Where it is based upon the fluorescence of fluorescein sodium salt and quenching effect of fluorescence by mebeverine in aqueous medium. The calibration graph was linear in the concentration range 0.05 to10 mMol.L-1 (r= 0.9629) with relative standard deviation (RSD%) for 1 mMol.L-1mebeverine solution was lower than 3% (n=6). Three pharmaceutical drugs were used as an application for the determination of mebeverine. A comparison was made between the newly developed method of analysis wit
... Show MoreA new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .
Spectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show More