It is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respectively, and the molar absorptivity was 0.7926×104 and 0.5466×104 L.mol-1.cm-1. The Flow Injection Analysis (FIA) method is used to estimate ceftazidime and in the second procedure record measurements using the UV-Visible approach. The Flow injection allows for exact drug estimation under ideal experimental conditions. The concentrations were in the range of (3-50) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 0.8102, 1. 2809µg.ml-1, and the molar absorptivity was 0.9565×104 ,0.7106×104 L.mol-1.cm-1, respectively. The proposed two methods for determination Ceftazidime in Pharmaceutical formulation were successfully applied, as these methods were characterized by simplicity, speed, accuracy, and low cost.
A simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) r
... Show MoreThe ion-pair formation method has been applied for the spectrophotometric determination of Cimetidine and Erythromycin ethylsuccinate, in bulk samples and in dosage form. The methods are accurate, simple, rapid, inexpensive and sensitive depending on the extraction of the formed ion-pair with brompthymol blue (BTB) as a chromogenic reagent in chloroform, use phthalate buffer of pH 5.5 and 4.0 for Cimetidine and Erythromycin ethylsuccinate respectively. The formed complexes show absorbance maxima at 427.5 nm and 414.5 nm for Cimetidine and Erythromycin ethylsuccinate respectively against reagent blank. The calibration graphs are linear in the ranges of 0.5-15 µg.mL-1 with detection limit of 0.222 µg.mL-1 for
... Show MoreA new, simple and sensitive method was used forevaluation of propranolol withphosphotungstic acidto prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between propranolol and phosphotungstic acid in an aqueous medium to obtain a yellow precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.007-13 mmol/L for cell A and 5-15 mmol/L for cell B, and LOD 207.4792 ng/160 µL and 1.2449 µg/160 µL respectively to cell A and cell B with correlation coefficient (r) 0.9988 for cell A, 0.9996 for cell B, RSD% was lower than 1%, (n=8) for the
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
A direct spectrophotometric method has been developed for the
determination of nitrite in aqueous solution. The method is based on the reaction of the nitritw ion with an acidified anline solution from diazonium cation , which is subsequently coupled ·with 4,6 - dihydroxy- 2- mercapto pyrimidine to from yellow colored and water
- soluble intense azo dye with maximum absorption at 416nm . A
graph of absorbance versus concentration shows that Bee's
... Show MoreA simple, sensitive, accurate, and precise spectrophotometric method for the determination of clonazepam (CLNZ) was developed. The method is based on charge transfer reaction between CLNZ and p-Bromanil (p-Br) to form a colored complex. The optimum conditions of complex formation were investigated by (1). Unvariable method, for the optimization of reagent concentration, base concentration, temperature, and time. (2). Multivariable simplex method including the effect of three experimental factors via; reagent concentration, concentration of NaOH and time. The linearity range of CLNZ was (1-30) μg.mL-1 at 378 nm under condition established via simplex method with molar absorptivity (1.9069x104) L.
... Show MoreMedicines comprising fosfomycin are prescribed for urinary tract infections. These drugs are available for oral use as tromethamine and calcium, while fosfomycin-sodium and disodium are given for intravenous (IV) and intramuscular (IM). Many quantitative analytical methods have been reported to estimate Fosfomycin in blood, urine, plasma, serum, and pharmaceutical dosage formulations. Some techniques were spectrophotometric, mass spectrometry, gas chromatography, high-performance liquid chromatography, and electrochemical methods. Here we perform a rapid narrative review that discusses and comparison between them of various analytical methods for the determination of Fosfomycin-containing drugs.
Cefixime is an antibiotic useful for treating a variety ofmicroorganism infections. In the present work, tworapid, specific, inexpensive and nontoxic methods wereproposed for cefixime determination. Area under curvespectrophotometric and HPLC methods were depictedfor the micro quantification of Cefixime in highly pureand local market formulation. The area under curve(first technique) used in calculation of the cefiximepeak using a UV-visible spectrophotometer.The HPLC (2nd technique) was depended on thepurification of Cefixime by a C18 separating column250mm (length of column) × 4.6 mm (diameter)andusing methanol 50% (organic modifier) and deionizedwater 50% as a mobile phase. The isocratic flow withrate of 1 mL/min was applied, the temper
... Show MoreA simple, sensitive and rapid method was used for the estimate of: Propranolol with Bi (III) to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on a reaction between propranolol and Bi (III) in an aqueous medium to obtain a yellow precipitate. Optimum parameters were studied to increase the sensitivity for the developed method. A linear range for calibration graph was 0.1-25 mmol/L for cell A and 1-40 mmol/L for cell B, and LOD 51.8698 ng/200 µL and 363.0886 ng /200 µL , respectively to cell A and cell B with correlation coefficient (r) 0.9975 for cell A, 0.9966 for cell B, RSD% was lower than 1%, (n = 8) for the
... Show MoreA simple and rapid spectrophotometric method for the determination of sulphite SO3-2 is described. The method is based on the rapid reduction of known amount of chromate CrO4-2 in the presence of sulphite in acidic medium of 2N H2SO4. The amount of excess of chromate was measured after it reactions with 1,5-diphenylcarbazide which finally gives a pink-violet, water soluble and stable complex, which exhibit a maximum absorption at 542 nm. Beer's law was obeyed in the concentration range from 0.004-6.0 µg of sulphite in a final volume of 25 ml with a molar absorbtivity of 4.64×104 l.mol-1.cm-1, Sandal's sensitivity index of 0.001724 ?g .cm-2 and relative standard deviation of ±0.55 - ±0.83 depending on the concentration level. The present
... Show More