The pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases,
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO)
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques,
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with different levels of snoRNA64,
including PK-1, PK-8, PK-4, and Mia PaCa-2. The level of expression is correlated with the cell line epithelial
or mesenchymal characteristics. Cell lines displaying epithelial characteristics such as PK-1, PK-8 show high
levels of snoRNA64 meanwhile, cell lines displaying mesenchymal characteristics such as PK-4, Mia PaCa-2
show low levels of snoRNA64. The level of expression is correlated with the cell line epithelial or
mesenchymal characteristics. After knocking down the PK-8 with high snoRNA64 expression, the epithelial
markers E. cadherin (E-cad) and Cytokeratin-8 (CK-8) are decreased, while mesenchymal markers Vimentin
(Vim), Cytokeratin-19 (CK-19), Metalloprotease -2 (MMP-2), and Metalloprotease-3 (MMP-3) are activated.
Those changes suggest that PK-8 responding to the snoRNA64 knock down protocol and increase in
mesenchymal function. Together, snoRNA64 expression may participate in epithelial to mesenchymal
transition (EMT) and mesenchymal to epithelial transition (MET), in which during metastasis these processes
are crucial. In addition, snoRNA64 may be considered as a potential diagnostic biomarker for both early and
invasive stages of PDAC. And due to its gradual expression decreases, it may be considered a barrier in tumor
progression.
Abstract: The aim of the present work is to measure radon concentration in wood. Solid state nuclear track detectors of type CR – 39 was used as measurement device. Eight different samples of imported and local wood were collected from markets. Samples were grinded, dried in order to measure radon concentrations in it. Cylindrical diffusion tube was used as detection technique. Results show that the higher concentration was in Iraqi sample 1 which recorded (14.02 ± 0.9) Bq / m3, while the less was in Emirates Sample which recorded (5.35 ± 1.2) Bq / m3. From the present work, all wood samples were with lowest concentrations of radon gas than other building materials.
In an attempt to disposal from nuclear waste which threats our health and environments. Therefore we have to find appropriate method to immobilize nuclear waste. So, in this research the nuclear waste (Strontium hydroxide) was immobilized by Carbon nanotubes (CNTs). The Nd-YAG laser with wave length 1064 nm, energy 750 mJ and 100 pulses used to prepare CNTs. After that adding Sr(HO)2 powder to the CNTs colloidal in calculated rate to get homogenous mixing of CNTs-Sr(OH)2. The Sr(HO)2 absorbs carbon dioxide from the air to form strontium carbonate so, the new solution is CNTs-SrCO3. To dry solution putting three drops from the new solution on the glass slides. To investigate the radi
... Show MoreAbstract:
Most of the studies on this subject, small industrial projects, by researchers and scholars in the economic field show the great and increasing importance of doing this kind of projects, the extent of which can be determined by the contribution of these projects to indicators and macroeconomic and sectorial variables. So this research aims to show the extent of the economic contribution of projects in selected international experiences and in the Iraqi economy. As international experiences have provided the opportunity for the progress and growth of small projects in their economies, which led to an increase in the contribution of these projects in the recruitment of economically active manpower, in added
... Show MoreHartree-Fock calculations for even-even Tin isotopes using
Skyrme density dependent effective nucleon-nucleon interaction are
discussed systematically. Skyrme interaction and the general formula
for the mean energy of a spherical nucleus are described. The charge
and matter densities with their corresponding rms radii and the
nuclear skin for Sn isotopes are studied and compared with the
experimental data. The potential energy curves obtained with
inclusion of the pairing force between the like nucleons in Hartree-
Fock-Bogoliubov approach are also discussed.
Human resources have been regarded as the most important asset for any organization because of its essential part in achieving the sustainable competitive advantage and survival. Managing human resources is very challenging and requires an effective bundle of practices that contribute to attaining the organizational goals. This study tries to confirm the importance of HRM practices in small businesses which came to play a vital role in the economies of the world, through clarifying the influence of HRM practices on the organizational performance, using a mediating variable (employees’ outcomes). Also the study attempts to highlight the key role of governmental support from view point of small businesses, through verifying the significant
... Show MoreOver the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities
A detailed methodology is presented in this paper for the calculation of nucleate boiling safety margin (NBSM) in nuclear research reactors using a temperature function with three different thermal-hydraulic hot-spot analyses: nominal, cumulative and statistical for normal operating condition and coolant flow variation. A computer simulation program is developed for applying the methodology to the IRT-5000 reactor based on experimental core data. According to cumulative analysis as the overconservative approach, the NBSM at normal operating condition of thermal power 5 MW and coolant velocity 1.672 m/s was 2.3% with reactor power limit 5.13 MW. However, during power or coolant flow trip condition, transient nucleate boiling would occur for
... Show More