Overall enthalpy and entropy of complex formation were calculated from stability constant measurements at different tempreture also experimental results
حضر الليكاند (L) 1-فنيل-3-بردين-2-يل مثيل-ثايويوريا من تفاعل 2-أمينو مثيل بردين مع فنيل ايزوثايوسيانيت وبنسبة 1: 1 وشخص الليكاند بواسطة التحليل الدقيق للعناصر (C, H, N), الأشعة تحت الحمراء، الأشعة فوق البنفسجية–المرئية وطيف الرنين النووي المغناطيسي كما حضرت وشخصت معقدات أملاح بعض ايونات العناصر الثنائية التكافؤ (Co, Ni, Cu, Cd and Hg). استخدمت تقنية الأشعة تحت الحمراء، الأشعه فوق البنفسجية-المرئية, التوصيلية الكهربائية و الا
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreBidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through Moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
This research involves the preparation of new ligands 1,1,2,2- tetrakis (sodium acetate thio)ethylene(L1) and 1,1,2- tris(sodiumacetatethio) ethylene(L2), through the reaction of disodium thioglycolate) with tetra chloro ethylene or tri chloro ethylene in (1:4) or (1:3) moler ratio . Homodinucliar complexes of general formlu [M2(L1)] and [M2(L2)ClH2O] , when M= Co(II), Ni(II), Cu (II) and Zn(II) also mono nuclear complexes of general formula [M(L2)] . The prepared complexes were characterized using spectral method (UV/Visible/ IR) , metal content analysis , magnetic and atomic measurements . The spectral and magnetic measurement indicats that some complexes have tetrahedral or square planar complexes environtment .
The aim of the work is synthesis and characterization of new bidentate chalcone ligand type (NO):[(E)-1-(3-aminophenyl)-3-(4-chlorophenyl) prop-2-en-1-one] [H2L], from the reaction of 3-amino acetophenone with 4-chloro benzaldehyde to produce the ligand [H2L], the reaction was carried out in ethanol as a solvent under stirring. The prepared ligand [H2L] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The complexes of ligand [H2L] were prepared with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni and Cu) at reflux ,using ethanol as a solvent and KOH as a base with molecular formula [M (H2L)2] +2 where: H2L= (C15H12NOCl). All the complexes were characterized by spectroscopic met
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreBackground: The primary stability of the dental implant is a crucial factor determining the ability to initiate temporary implant-supported prosthesis and for subsequent successful osseointegration, especially in the maxillary non-molar sites. This study assessed the reliability of the insertion torque of dental implants by relating it to the implant stability quotient values measured by the Osstell device. Material and methods: This study included healthy, non-smoker patients with no history of diabetes or other metabolic, or debilitating diseases that may affect bone healing, having non-restorable fractured teeth and retained roots in the maxillary non-molar sites. Primary dental implant stability was evaluated using a torque ratc
... Show More