The study involved preparing a new compound by combining Schiff bases generated from compounds for antipyrine, including lanthanide ions (lanthanum, neodymium, erbium, gadolinium, and dysprosium). The preparation of the ligand from condensation reactions (4-antipyrinecarboxaldehyde with ethylene di-amine) at room temperature, and was characterization using spectroscopic and analytical studies ( FT-IR, UV-visible spectra, 1H-NMR, mass spectrometry, (C.H.N.O), thermogravimetric analysis (TGA), in addition to the magnetic susceptibility and conductivity measurement of the synthesis complexes, among the results we obtained from the tests, we showed that the ligand behaves with the (triple Valence) lanthanide ions, the multidentate behavior through two oxygen atoms of the carbonyl group and two nitrogen atoms of the azomethine group with all the prepared complexes in a molar ratio (1:1). The participation of six groups of bidentate nitrate in the coordination and indicating that their complexes have values of magnetic moment and paramagnetic character and, based on the results of those measurements, the geometrical shape of the complexes was proposed. The biological activity of the prepared complexes was studied using the antibacterial activity, as the results of its effectiveness showed the direction of the bacteria used (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumoniae) at the concentration of 1×10-3M
Adherence to cardiac medications makes a significant contribution to avoidance of morbidity and premature mortality in patients with cardiovascular disease. This quantitative study used cross‐sectional survey design to evaluate medication adherence and contributing factors among patients with cardiovascular disease, comparing patients who were admitted to a cardiac ward (
This study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show MoreBackground: The interest in herbal extracts as antimicrobial agents has increased over the past few years in endodontic therapy. Nasturtium officinale (watercress) is a promising plant with great medicinal values. This study aimed to investigate the antifungal activity of watercress oil in combination with calcium hydroxide against Candida albicans as intracanal medicament. Materials and Methods: Candida albicans was isolated from patients with necrotic root canal or failed root canal treatment. The sensitivity of Candida albicans to different concentrations of watercress oil extract was determined by using the agar well diffusion method in comparison with calcium hydroxide paste. The agar plate method was used to determine the minimum fung
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreThis study focuses on the biodegradation of oxymatrine insecticide by some soil fungi isolated from four agriculture stations. The results showed that the highest degradation rate 94.66% was recorded by Ulocladium sp. at 10 days and A. niger recorded the lowest degradation rate 45.86%, while at 20 days Ulocladium sp. also showed the highest degradation rate 94.98% and the lowest degradation rate reached to 82.49% with A.niger. The mix (Exerohilum sp.+Ulocladium sp.) recorded the highest degradation rate of oxymatrine insecticide 90.22%, 88.51%, 85.34% at 4, 8 and 12 ppm.The use of mixed isolates enhanced the biodegradation process. There is no study of oxymatrine biodegradation
... Show MoreEfficacy of Varnishes with: Bioactive Glass, Recaldent Technology and Silver Diamine Fluoride in Comparison with Sodium Fluoride on Tooth Surface Micro-hardness (an In Vitro Study)