This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influenced by a low viscosity factor of 0.0015 Pa.s. In addition, circulation throughout the blood vessels occurs due to high pressure in the heart and the pressure becomes lower when it returns from the blood vessels at the same parameters. Finally, when the viscosity is high, the extreme magnitudes of blood flow tend toward the vessel wall at approximately the same velocity and radius of the gradient.
In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun
... Show MoreTwo series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-
In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
The study aimed to investigate the effect of different times as follows 0.5, 1.00, 2.00 and 3.00 hrs, type of solvent (acetone, methanol and ethanol) and temperature (~ 25 and 50)ºc on curcumin percentage yield from turmeric rhizomes. The results showed significant differences (p? 0.05) in all variables. The curcumin content which were determined spectrophotometrically ranged between (0.55-2.90) %. The maximum yield was obtained when temperature, time and solvent were 50ºC, 3 hrs and acetone, respectively.
Objective: This in vitro study is aimed to compare and evaluate the cyclic fatigue of four varying NiTi rotary instrumentation systems. Method: In this study, four types of rotary files were used in four groups (10 files for each group), namely, Group A: Wave One Gold; Group B: AF Blue R3; Group C: One Curve; Group D: F6 SkyTaper. These groups were evaluated by a cyclic fatigue apparatus to measure cyclic fatigue resistance within the artificial metallic simulating canal that has a 60 angle of curvature, the curvature radius was 5 mm, whereas the inner diameter of the canal was 1.5 mm. All the files were rotated in artificial canals until they fracture. The resistance to cyclic fatigue was determined by counting the number of cycles to frac
... Show MoreBackground: One of the most common problem associated with the used of soft denture lining material is microorganisms and fungal growth especially Candida albicans, which can result in chronic mucosal inflammation. The aim of this study was to evaluate the influence of chlorhexidine diacetate (CDA) salt Incorporation into soft denture lining material on antifungal activity; against Candida albicans, and the amount of chlorhexidine di-acetate salt leached out of soft liner/CDA composite. Furthermore, evaluate shear bond strength and hardness after CDA addition to soft liner Materials and methods: chlorhexidine diacetate salt was added to soft denture lining material at four different concentrations (0.05%, 0.1% and 0.2% by weight). Four hund
... Show More