This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influenced by a low viscosity factor of 0.0015 Pa.s. In addition, circulation throughout the blood vessels occurs due to high pressure in the heart and the pressure becomes lower when it returns from the blood vessels at the same parameters. Finally, when the viscosity is high, the extreme magnitudes of blood flow tend toward the vessel wall at approximately the same velocity and radius of the gradient.
BACKGROUND: Coronavirus current pandemic (COVID-19) is the striking subject worldwide hitting countries in an unexplained non-universal pattern. Bacillus Calmette–Guérin (BCG) vaccine was an adopted recent justification depending on its non-specific immune activation properties. Still the problem of post-vaccine short duration of protection needs to be solved. The same protective mechanism was identified in active or latent tuberculosis (TB). For each single patient of active TB, there are about nine cases of asymptomatic latent TB apparently normal individuals living within the community without restrictions carrying benefits of immune activation and involved in re-infection cycles in an excellent example of repeated immunity tr
... Show MoreSpergularia iraqensis sp. nov. is described as a new species from Iraq. This species has been collected from Diyala Province in the central east of Iraq; it is closely related to Spergularia rubra (L.) J. Presl & C. Presl, 1819 and Spergularia bocconei (Scheele) Graebn., 1919.
The distinguishing of the morphological characteristics of the new species alongside the two similar species are discussed with photographs, and an identification key is given for Spergularia iraqensis and other closely related species.
Objective(s): This study was conducted to deal with the importance and effect of various variables which might
have influence in hydrocephaly occurrence.
Methodology: A retrospective design was performed and continued for 4 months. It included 89 nonrandomized
consecutive samples collected from the Early Detection of Childhood Disabilities Center (E.D.C.D.C.)
Duhok. The population involved was the entire cases of both sexes that attended the centre during the period from
1
st.Jan, 1998 to 30th. Dec. 2008 with final diagnosis of hydrocephaly. Patients’ records from the centre were used to
collect data.
Results: Hydrocephaly has been recognized as a public health problem in Duhok province, Iraqi Kurdistan region,<
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
Background: Atherosclerosis is well known related to age and certain cardiovascular diseases. Aging is one reason of arteries function deterioration which can cause loss of compliance and plaque accumulation, this effect increases by the presence of certain diseases such as hypertension and diabetes disease. Aim: To investigate the reduction of blood supply to the brain in patients with diabetes and hypertension with age and the role of resistive index in the diagnosis of reduced blood flow. Method: Patients with both diseases diabetic and hypertension were classified according to their age to identify the progression of the disease and factors influencing the carotid artery blood flow. By using ultrasound and standard Doppler techniq
... Show MoreAlthough renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show MoreThis research paper studies the alienation of the intellectuals in the modern novel through the study of two alienated characters, John Marcher in Henry James's The Beast in the Jungle, and Mr. Duffy in James's Joyce's "A Painful Case." As a result of the complexity of life in the industrial societies, the individuals, especially the intellectual ones, feel themselves unable to integrate into social life; they fear society and feel that it endangers their individuality and independence. Thus, these characters live on the fringe of the societ
... Show More