In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the functionally
graded samples were enhanced by 43.69% and 52.74%, respectively, if loaded from the alumina-rich side.
On the other hand, when loading (FGM) from the epoxy side, the amount of decrease in bending resistance
was 122.4% while the improvement in bending modulus was 81.11% compared to pure epoxy. Scanning
electron microscopy (SEM) revealed the fracture surface of the impact samples and the gradient scattering of
nanoparticles in the epoxy matrix. Numerous applications can be used to manufacture the functionally
graded material by centrifugal casting method, including for the manufacture of gears and all bending
applications such as leaf springs.
Implementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.
Abstract: Despite the distinct features of the continuous wave (CW) Terahertz (THz) emitter using photomixing technique, it suffers from the relatively low radiation output power. Therefore, one of effective ways to improve the photomixer emitter performance was using nanodimensions electrodes inside the optical active region of the device. Due to the nanodimension sizes and good electrical conductivity of silver nanowires (Ag-NWs), they have been exploited as THz emitter electrodes. The excited surface plasmon polariton waves (SPPs) on the surface of nanowire enhances the incident excitation signal. Therefore, the photomixer based Ag-NW compared to conventional one significantly exhibits higher THz output signal. In thi
... Show MoreDensity Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.
Copper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreOne of the most important techniques for preparing nanoparticle material is Pulsed Laser Ablation in Liquid technique (PLAL). Carbon nanoparticles were prepared using PLAL, and the carbon target was immersed in Ultrapure water (UPW) then irradiated with Q-switched Nd:YAG laser (1064 nm) and six ns pulse duration. In this process, an Nd:YAG laser beam was focused near the carbon surface. Nanoparticles synthesized using laser irradiation were studied by observing the effects of varying incident laser pulse intensities (250, 500, 750, 1000) mJ on the particle size (20.52, 36.97, 48.72, and 61.53) nm, respectively. In addition, nanoparticles were characterized by means of the Atomic Force Microscopy (AFM) test, pH easurement
... Show MoreThe eggshell cuticle is the proteinaceous outermost layer of the eggshell which regulates water exchange and protects against entry of micro-organisms. Outer eggshell and cuticle protein was extracted from domestic chicken. The aim of the research is to find out the effect of the treated and untreated nano particles of egg shells with micro wave cold plasma on the effectiveness of E. coli (negative bacteria) that infect the skin and measure the diameter of bacterial inhibition zone, the eggshell has been prepared by a chemical method (sol gel) and measure the level of acidity and the PH is neutral. The result of Atomic Force Microscope (AFM) shows that the particles diameters become smaller with nano-particles solution than for egg
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreThis study was conducted at the field of poultry-Abu Gharib/department of Animal Production/college of agricultural engineering Sciences-university of Baghdad, during the period from 12/10/2019 to 24/11/2019 duration (42 days), to demonstrate the effect of adding different levels of Allicin to broiler diet on Glutathione level in blood and histological of thymus gland, total of 225 Ross 308 chicks was used. Birds were randomly distributed into five treatment groups which were: First treatment T1: without additives to diet (control), other treatments T2, T3, T4, T5 was added Allicin at a rate of (800,600,400,200 mg/Kg diet) respectively, and Allicin was added from first day until the end of the experiment for all addition treatments, results
... Show MoreIn this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.