In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the functionally
graded samples were enhanced by 43.69% and 52.74%, respectively, if loaded from the alumina-rich side.
On the other hand, when loading (FGM) from the epoxy side, the amount of decrease in bending resistance
was 122.4% while the improvement in bending modulus was 81.11% compared to pure epoxy. Scanning
electron microscopy (SEM) revealed the fracture surface of the impact samples and the gradient scattering of
nanoparticles in the epoxy matrix. Numerous applications can be used to manufacture the functionally
graded material by centrifugal casting method, including for the manufacture of gears and all bending
applications such as leaf springs.
The aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreIn this work, γ-Al2O3NPs were successfully biosynthesized, mediated aluminum nitrate nona hydrate Al(NO3)3.9H2O, sodium hydroxide, and aqueous clove extract in alkali media. The γ-Al2O3NPs were characterized by different techniques like Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy–dispersive x-ray spectroscopy, transmission electron microscope (TEM), Energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The final results indicated the γ-Al2O3NPs nanoparticle size, bonds nature, element phase, crystallinity, morphology, surface image, particle analysis – threshold detection, and the topography parameter. The id
... Show MoreThe cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreThe study aims to use the European Excellence Model (EFQM) in assessing the institutional performance of the National Center for Administrative Development and Information Technology in order to determine the gap between the actual reality of the performance of the Center and the standards adopted in the model, in order to know the extent to which the Center seeks to achieve excellence in performance to improve the level of services provided and the adoption of methods Modern and contemporary management in the evaluation of its institutional performance.
The problem of the study was the absence of an institutional performance evaluation system at the centre whereby weaknesses (areas of improvement) and st
... Show MoreThe esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show More