A set of ten drug compounds containing an amino group in the structure were determined theoretically. The parameters were entered into a model to forecast the optimal values of practical (log P) medicinal molecules. The drugs were evaluated theoretically using different types of calculations which are AM1, PM3, and Hartree Fock at the basis set (HF/STO-3G). The Physico-chemical data like (entropy, total energy, Gibbs Free Energy,…etc were computed and played an important role in the predictions of the practical lipophilicity values. Besides, Eigenvalues named HOMO and LUMO were determined. Linearity was shown when correlated between the experimental data with the evaluated physical properties. The statistical analysis was used to analyze the descriptors like multiple linear regression analysis performed to derive quantitative structure-activity relationship models which were further evaluated for the values of the prediction. The correlation coefficient gives an excellent relationship of more than (0.980, 0.980, and 0.978) for AM1, PM3, and HF/STO-3G respectively. A docking study was applied for the interaction of medicines with protein. All the drugs were connected with the protein to give the best energy stability for the docking mixtures. Nepafenac (compound No. 8) had the most stable energy with the protein compared with the 4-Aminosalicylic acid (compound No. 2) which had less energy stability.
Objective: impact of the education program for nurses' knowledge toward children under mechanical
ventilation, and to find out the relationships between nurses' knowledge and their general information.
Methodology: Quasi experimental study was carried out at the respiratory care units of Baghdad
Pediatric Teaching Hospitals started from February15th, until September 26th, 2011, A purposive (nonprobability)
sample of (23) nurses working in the respiratory care units, were selected from Children
Welfare and Pediatric Central Teaching Hospitals. The data were gathered through using of the
constructed multiple choice questionnaire using to evaluate the nurses knowledge using checklist, The
questionnaire consists of two p
The current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the
Release of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreWater samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral mucosa. Human papillomavirus (HPV) virus cause a broad scope of diseases from benign to invasive tumors, types 16 and 18 classified as carcinogenic to humans. This study aimed to provide the first molecular characterization of HPV types in Iraq. Thirty-five unstimulated whole saliva samples were collected from histopathologically confirmed patients with oral cancer were enrolled in this study. Genomic DNA was extracted from exfoliating cells to amplify HPV-DNA using HPV-L1 gene sequence primers by polymerase chain reaction method (PCR), the viral genotyping was performed using direct sequencing method. HPV genotypes identified were deposited in Gen
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThe drive of this exploration is to investigate the mucoadhesive assets of A. indica (Azadirachta indica) fruit mucilage by incorporating it into mucoadhesive microspheres with Acyclovir (AVR) as a model drug. The study was performed to check the impact of the mucilage proportion on particle size and swelling index. Nine batches of AVR mucoadhesive microspheres were made with varying proportions of Polyacrylic acid 934P and A. indica fruit mucilage (AIFM). A central composite design with design expert software to check the impact of dependent variables (A. indica mucilage and Polyacrylic acid 934 P levels) on particle size and swelling index as a response. As part of congeniality studies, the batches w
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show More