In this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this study and the adsorption process was found to fit Dubinin-Radushkevich isotherm (R2 = 0.970). The thermodynamic parameters: ∆Gº, ∆Hº, ∆Sº were also invested, the results indicate the process to be exothermic (∆Hº = -100.933 kJ/mole), non-spontaneous, and more feasible at lower operating temperatures, with a decrease in the randomness at the solid-liquid interface (∆Sº = - 0.370 kJ/mole.K)
Pharmaceuticals are widely distributed in different applications and also released into the environment. Adsorption of Ciprofloxacin HCl (CIPH) on Porcelinaite was studied at ambient conditions. The adsorption isotherms can be well described using the Freundlich and Temkin equations. The pH of the solution influences significantly the adsorption capacity of Porcelinaite, the adsorption of CIPH increased from the initial pH 1.3 and then decreased over the pH rang of 3.8-9. The adsorption is sensitive to the change in ionic Strength, which indicate that electrostatic attraction is a significant mechanism for sorption process. The enthalpy change (ΔH) for the adsorption of CIPH onto Porcelinaite signifies an endothermic adsorption. The ΔG va
... Show MoreAdsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. The removal of methyl green from waste water using bamboo was studied in batch and continuous system. In batch system equilibrium time and adsorption isotherm was studied at different concentrations (5, 10, 15, 20, 25 and 30 ppm) and 50 mg weight of adsorbent.
Langmuir and Freundlich equations were applied for adsorption isotherm data. Langmiur equation was fitted better than Freundlich equation (R2=0.984 for Langmuir equation).The maximum percentage dye removal obtained 79.4% and adsorption capacity was 15.5 mg/g. For continuous system the breakthr
The Wheat husk is one of the common wastes abundantly available in the Middle East countries especially in Iraq. The present study aimed to evaluate the Wheat husk as low cost material, eco-friendly adsorbents for the removal of the carcinogenic dye (Congo red dye) from wastewater by investigate the effect of, at different conditions such as, pH(3-10), amount of adsorbents (1-2.3gm/L),and particle size (125-1000) μm, initial Congo red dye concentration(10, 25 , 50 and 75mg/l) by batch experiments. The results showed that the removal percentage of dye increased with increasing adsorbent dosage, and decreasing particle size. The maximum removal and uptake reached (91%) , 21.5mg/g, respectively for 25 initial concent
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThis research presents the possibility of using banana peel (arising from agricultural production waste) as biosorbent for removal of copper from simulated aqueous solution. Batch sorption experiments were performed as a function of pH, sorbent dose, and contact time. The optimal pH value of Copper (II) removal by banana peel was 6. The amount of sorbed metal ions was calculated as 52.632 mg/g. Sorption kinetic data were tested using pseudo-first order, and pseudo-second order models. Kinetic studies showed that the sorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe. Thermodynamic parameters such as enthalpy change (ΔH
... Show MoreThis study was done to find a cheap, available and ecofriendly materials that can remove eosin y dye from aqueous solutions by adsorption in this study, two adsorbent materials were used, the shells of fresh water clam (Cabicula fluminea) and walnut shells. To make a comparison between the two adsorbents, five experiments were conducted. First, the effects of the contact time, here the nut shell removed the dye quickly, while the C. flumina need more contact time to remove the dye. Second, the effects of adsorbent weight were examined. The nut shell was very promising and for all used adsorbent weight, the R% ranged from 94.87 to 99.29. However C. fluminea was less effective in removing the dye with R% ranged from 47.59 to 55.39. The thi
... Show MoreIn this article, the adsorption of Cu(ll) ion from aqueous solution into polyacrylic acid
(PAA) hydrogel bead has been investigated using a batch method of different
temperature (10-30 °C) and different contact time (1-48 hr) to reach the equilibrium of
adsorption. Initial concentration and adsorption capacity of the adsorbents is presented,
the time required to reach a maximum capacity of bead was about 24hr. The temperature
effect on adsorption was studied and the experimental data have been analyzed using the
Langmuir and freundlich isotherm models. The adEsorption capacity at equilibrium was
found to be 142.68 mg/g; more than 95% of studied cation was removed by the
adsorbent. The process is very efficient es