Land use change, particularly the expansion of urban areas and associated human activities at the expense of natural and semi-natural areas, is a major ecological issue in urban areas around the world. Climate change being a very strong additional driver for changing the temperature and habitat in the cities. This also applies to Baghdad, Iraq, where urbanisation and climate change exerts a major pressure on the natural habitats of the city, and thus may affect the ability of city planners to adapt to future climate change scenarios. Here we present evidence of substantial growth in urban areas, increases in temperature, and degradation of natural vegetation within Baghdad city by using Remote Sensing techniques and an assessment for the Jadriyah and Umm Al-Khanazeer site (JUKI). These changes were associated with loss of bird species richness within the area, which was previously the only Important Bird Area (IBA) within the city. A standardised scoring system (following Birdlife International global framework) was used to assess Pressure-State-Response: JUKI site scored 3-5 for pressure (Medium), two for the state (Moderate), and two for the response (Low). Despite the degradation highlighted in Baghdad city, the JUKI site still has 88% intact habitat to support bird trigger species. We conclude that the site urgently needs a detailed management plan to ensure the protection of its habitats and avian fauna, and that the area should be declared as a protected area according to the “IUCN Category IV: Habitat/Species Management Area; to provide a means by which the urban residents may obtain regular contact with nature”, and re-designated JUKI as an IBA site. The study also identifies the most affected areas in the city of Baghdad, which should take the priority of the afforestation efforts and any future restoration campaigns.
Decolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 an
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreDental amalgam is a mixture of approximately 50% mercury and varying ratios of silver, tin, zinc, and copper. Dental amalgam is a major source of mercury pollution because it is readily absorbed through 90-100% vapour and the oral mucosa. In addition, in certain situations with the oral environment, various types of metallic orthodontic brackets are highly aggressive and can lead to corrosion. However, polyvinyl alcohol (PVA) material has no cytogenetic effects on human health or the environment and is therefore applied in the manufacturing of the new composite material. Different additives from the bonding agent (PVA; 2.4, 4.8, and 7.2 g) dissolved in about 10 ml of water, heated on a hot plate under a hig
... Show MoreTin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show MoreThe varied thermal conductivity (insulation) of silica aerogel with heating for different pH has been investigated, it has been depended on ambient pressure drying method in the preparing silica aerogel samples, also six different pH of samples (1, 2, 3, 7, 8 and 9) were treated under five degree of heating with (50,100,150,200 and 250) ᴼC. This technique is important to test the carry-outs hydrophobic silica to temperature without high-quality material changes in the basic characteristics. The hot-wire technique is used in this work to examine the thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR) depended to characterize the bonds and their artificial by heating. Resu
... Show More