The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). Under the applied experimental circumstances, the obtained characterization data confirm the synthesis of multi-wall carbon nanotubes (MWCNTs) with portion from few wall carbon nanotubes (FWCNTs). The average diameter of synthesized Carbon nanotubes ranged from 31.26 to 78.00 nm, with a purity of more than 65 percent.
Synthesis of 2-(4-Acetyl-phenyl)-4-nitro-isoindole-1, 3-dione chalcones were performed by fusion of 3-nitro phthalic anhydride with p-aminoacetophenone. Then the later was grinded with different aromatic aldehydes in the presence of sodium hydroxide to produce new chalcones derivatives A3-10 without using any solvent formation of new N- arylphthailimide chalcones were confirmed by FT-IR,1HNMR, 13CNMR spectroscopy and all final compounds were tested for their antifungal and antibacterial activity some of them showed more biological activity than the standard drugs
Objectives: Six different Schiff bases were synthesized from ampicillin and amoxicillin with isatin, 5-bromoisatin, and 5-nitroisatin. Methods: Ampicillin and Amoxicillin are linked directly through their α-amino groups to the acyl side chain with isatin and isatin derivatives by nucleophilic addition using glacial acetic acid as a catalyst. Results: chemical structures of these Schiff bases were confirmed using FTIR, 1H NMR and elemental microanalysis. The antibacterial activity was evaluated by measuring minimum inhibitory concentration (MIC) values and showed various degrees of antibacterial activities when compared with parent drugs. Compounds 1a and 2b, which are the Schiff bases of ampicillin and amoxicillin with isatin, showed very
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show MoreFive novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived fromErythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showedgood activities against four pathogenic bacteria (Escherichia coli , Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer.Theorder
... Show MoreInthis study new derivatives of Schiff bases and nucleoside analogues have been synthesized from the starting material D-glucose after a series of reactions. Derivative 1 was prepared from D-glucose then react with P-bromoacetophenone gave derivative 2 was reacted with dimethyl sulfoxide and acetic anhydride for dehydration a molecule of water gave 3. The spiro ring was prepared at 3-position from the reaction of 3 derivative with 1-phenyl-2–thioureagave 4. The protection group at 1 position was removed by using acetic acid fllowed by periodate oxidation to obtain 6. Reaction of 6 with hydrazide derivative at once and dtriazole derivative at another gave 8 and 9 respectively. Compound 6 was reduced to gave derivative 7. The 1-hydroxylgrou
... Show MoreGreen synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at
... Show MoreThis new azo dye 3-((2-(1H-indol-3-yl) ethyl) diazenyl) quinoline-2-ol was subsequently used to prepare a series of complexes with the metal ions of Cr+3, Cu+2, VO+2, Mn+2and Mo+6. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a bidantate, and that the complexes gave octahedral, excepting for VO+2 square pyramid was given, that all complexes are non-electrolytes. The effectiveness of mention the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard s
... Show MoreTwo new organotin(IV) complexes Me2Snesc (C1) and Bu2Snesc (C2) have been synthesised from the reaction of the corresponding organotin(IV) chloride with the Schiff base ligand 3,4-dihydroxybenzaldehyde-4-ethylsemicarbazone (H2esc). The ligand was prepared in two steps. The first step includes the formation of 4-ethylsemicarbazide, which then reacted with 3,4-dihydroxybenzaldehyde to give the title ligand. Complex formation between the organotin(IV) moiety and the anionic form of 3,4-dihydroxybenzaldehy-4-ethylsemicarbazone occurred through the o-dihydroxy positions. The ligand and its complexes were characterised by elemental analysis, FT-IR and NMR (1H, 13C and 119Sn) spectroscopy. Accordingly, the complexes were proposed to have tetrahedr
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show More