The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). Under the applied experimental circumstances, the obtained characterization data confirm the synthesis of multi-wall carbon nanotubes (MWCNTs) with portion from few wall carbon nanotubes (FWCNTs). The average diameter of synthesized Carbon nanotubes ranged from 31.26 to 78.00 nm, with a purity of more than 65 percent.
Four major factories (Petroleum Refineries Company, Detergents Plant, Thermal Power Plant, and Gaseous Power Plant) are located to the north of Baiji City. They release pollutants in form of gases, liquids and solids; they find their way to the surrounding environment. To assess the environmental pollution of the area, 18 samples of surface soil distributed around the industrial establishments were collected and analyzed to determine the concentration of polycyclic aromatic hydrocarbons (PAH) components which are often targets in the environmental checking. Identification and quantification of the 16 PAHs components was accomplished using High Performance Liquid Chromatography (HPLC) had a model Shimadzu LC-10 AVP. The total concentratio
... Show MoreThe demand on energy sources throughout the world have led to an increase in the production processes of crude oil which is considered to be the main source of energy, without considering the impact on the environment. The objective of this study is to evaluate the environmental impact of drilling processes and crude oil spillage on soil in the Rumaila oil field, Basra, Southern Iraq. An investigation was undertaken to determine the content of Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals in the soil. Ten soil samples were collected near oil wells and analyzed. The results showed a high concentration of PAHsin the soil, particularly (Acenaphthene, Fluorene, Anthracene, Fluoranthene and Pyrene) due to crude oil spillage. The he
... Show MoreThe environmental contamination by the polycyclic aromatic hydrocarbons (PAHs) and heavy metals (Pb, Cu, Ni, Cr, and Cd) concentrations in the leaves of plant Eucalyptus camaldulensis were determined at the city of Kirkuk in 15 selected locations using GPS. The pickings up of samples were carried out in two periods October 2010 and March 2011. Compared with results of other studies, the concentration levels of determined heavy metals show values within these studies results. The average total concentration of polycyclic aromatic hydrocarbons (PAHs) in the leaves of Plant Eucalyptus camaldulensis indicated 37.1 ppb in October, while in March 165.2 ppb.
The mode
... Show MoreThe monitoring of lotic ecosystems is important for environmental health after war crisis. This study aimed to detect the fate of the sixteen polycyclic aromatic hydrocarbon compounds (PAHs) as priority pollutants in the water and sediment of Al-Hussainya River in Karbala Province. The results indicated that the concentrations in water samples ranged from 0.24–58.72 ηg.L-1 for each of the benzo(a) pyrene and benzo(g, h, i)perylene. The concentrations in sediment samples have been observed to be in a range of 0.36–119.06 μg.g-1 for naphthalene and benzo(g,h,i)perylene. Benzo(g,h,i)perylene recorded the highest concentrations in each of water and sediment samples as compared with the other compound
... Show MoreCeramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character
... Show MoreSmoking-related diseases can be attributed to the inhalation of many different toxins, including heavy metals, which have a host of harmful health effects. The primary objective of this study was to determine whether local and imported cigarette brands used in Iraq , have they elevated levels of metals or not .Three metals Lead (Pb) , Cadmium (Cd) and Chromium(Cr) were determined in tobacco of seventeen brands of imported cigarettes commonly available in Iraq and three Iraqi domestic cigarettes , which were randomly taken from retail market in Baghdad by using flame atomic absorption spectrometry. The produced data of imported and local cigarette brands were discussed and compared together and with studies from elsewhere .The result
... Show MoreThin film technology is one of the most important technologies
that have contributed to the development of semiconductors and their
applications in several industrial fields. The Iron Oxides (Fe20) and
(Co3O4) thin films and their applications are of importance, in that these
two materials are considered as important industrial materials, and used
in spectrally selective coating, temperature sensors, resistive heaters, and
photo cells.
Thin films of Iron Oxide (Fe20,), Cobalt Oxide (Co304) and
their mixtures in different ratios (75:25, 50:50, 25:75) were prepared by
the method of chemical spray pyrolysis deposition at different thicknesses
(77s t S200) nm on cover-glass substrates: thickness of (1) mm at
Gas Lasers are important tools that are used in variety purposes, for their low and (cw) output power. The aim of this study was to prepare a way to calculate an optimum stimulated emission cross-section in a gas laser containing a mixture of Xenon and Neon by (30%-70%). The process was a theoretical study of each gas in separate in terms of their physical properties as an active medium. The results of these calculations are logic and more convenient than other mixtures used before
The radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3).
In this work, a Radio Emission Background at 1.42 GHz; 21 cm Hydrogen line is carried out by using a 3-meter radio telescope, these telescope is placed on the roof of the building the Astronomy and Space Department at the college of Science, University of Baghdad. Background spectrometry files were received and arranged with a schedule of minimum observation time with span in (GHz). In this work, an observation program was set up to identify some variables related to the telescope and its study, including span, sweep time and central frequency using (MATLAB 2013 software) by reading four files which were selected from the dataset and in different observation times and different span.