The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). Under the applied experimental circumstances, the obtained characterization data confirm the synthesis of multi-wall carbon nanotubes (MWCNTs) with portion from few wall carbon nanotubes (FWCNTs). The average diameter of synthesized Carbon nanotubes ranged from 31.26 to 78.00 nm, with a purity of more than 65 percent.
The annealing temperature (200–500 °C) effects of optical frequency response on the dielectric functions of sol–gel derived CuCoO
The radial wave functions of the generalise dWoods–Saxon (GWS) potential within the two-body model of (Core + n) have been used to study the ground-state density distributions of protons, neutrons and matter and the associated root mean square (rms) radii of neutron-rich 14B, 22N, 23O and 24F halo nuclei. The calculated results show that the radial wave functions of the generalised Woods–Saxon potential within the two-body model succeed in reproducing neutron halo in these exotic nuclei. Elastic electron scattering form factors for these nuclei are studied by combining the charge density distributions with the plane-wave Born approximation (PWBA).
In this study, the possible protective effects of daidzein on ifosfamide-induced neurotoxicity in male rats were examined by the determination of changes in selected oxidant–antioxidant markers of male rats’ brain tissue.
Twenty-eight (28) apparently-healthy Wistar male rats weighing (120-150gm) allocated into 4 groups (n=7) were used in this study. Rats orally-administered 1% tween 20 dissolved in distilled water/Control (Group I); rats were orally-administered daidzein suspension (100mg/kg) for 7 days (Group II); rats intraperitoneally-injected with a single dose of ifosfamide (500 mg/kg) (Group III); rats orally-administered for 7 days with the daidzein (100mg/
... Show MoreObjective: This study aims to examine how implementing Extensible Business Reporting Language (XBRL) enhances the efficiency and quality of environmental audits and sustainability reporting in eco-friendly universities. Aligned with Sustainable Development Goal 12 (Responsible Consumption and Production), the study emphasizes promoting transparency and precision in sustainability reporting to encourage responsible management of resources within academic institutions. Theoretical Framework: The importance of our study is evident in the importance of accurate and transparent reports in the development of environmental performance with theories of sustainable reporting and environmental auditing. One of the most important digital
... Show MoreThe electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured valu
... Show MoreIn subterranean coal seam gas (CSG) reservoirs, massive amounts of small-sized coal fines are released during the production and development stages, especially during hydraulic fracturing stimulation. These coal fines inevitably cause mechanical pump failure and permeability damage due to aggregation and subsequent pore-throat blockage. This aggregation behavior is thus of key importance in CSG production and needs to be minimized. Consequently, such coal fines dispersions need to be stabilized, which can be achieved by the formulation of improved fracturing fluids. Here, we thus systematically investigated the effectiveness of two additives (ethanol, 0.5 wt % and SDBS, 0.001 and 0.01 wt %) on dispersion stability for a wide range of condit
... Show More