Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visualized and analyzed according to the theory of Complex Networks by representing the stations as nodes and the transmission lines as edges. This analysis is done by applying network metrics to the proposed national IPG network. Finally, this work provides a professional visualization of the generated network based on the demographic distribution and the accurate coordinates of the power stations. Thus, this proposed network is useful for the Iraqi Ministry of Electricity. Besides, it can be adopted by officials and specialists to understand, visualize and evaluate the performance of the current IPG network since it is still under development and modernization.
Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as th
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe insect is diagnosed and named by the National Center of Biotechnology Information (NCBI), USA as the Mint leaf Beetle Chrysolina herbacea alnadawi (Duftschmid, 1825), (Coleoptera: Chrysomelidae). The diagnosis was performed depending on the DNA analysis by 73% similarity with Chrysolina herbacea (Duftschmid, 1825) sequence, In the present study. It is recorded as a new insect pest on mint plant Mentha puleguim (L,1753) (Lamiaceae). DNA analysis confirmend that it is recorded for the first time in Iraq and the Arab world as well as the Middle East. Those insects were observed initially during August 2017 in residential gardens of Al-Bonooq district in Baghdad / Iraq.
Anthropogenic activities cause soil pollution with different serious pollutants, such as polycyclic aromatic hydrocarbon (PAHs) compounds. This study assessed the contamination of PAHs in soil samples collected from 30 sites divided into eight groups (residential areas, oil areas, agricultural areas, roads, petrol stations, power plants, public parks and electrical generators) in Basrah city-Iraq during 2019-2020. The soil characteristics including (moisture, pH, EC and TOC) were measured. Results showed the following ranges (soil moisture (0.03-0.18%),pH (6.90-8.16), EC (2.48-104.80) mS/cm and TOC (9.90-20.50%)). Gas Chromatography (GC) was used to measure PAHs in extracted soil samples. The total PAH range (499.96 - 5864.86) ng/g dr
... Show MoreThe aim of this study was to provide an overall assessment to the efficiency of the Iraq stocks exchanges (ISE) through specifying well –known models .First, Fama's efficient market hypothesis as a contrary concept to the random walk hypothesis, was performed and it has been found that ISE follows the random process, so the price of the shares can't be predicated on the basis of past information. Second,we use a multifactor model, which so named multiple regression, to explore the link between ISE and the main economic indicators. our empirical analysis finds that every weak associations exists between major ISE measures and main economic indicators.
The study aims to provide a Suggested model for the application of Virtual Private Network is a tool that used to protect the transmitted data through the Web-based information system, and the research included using case study methodology in order to collect the data about the research area ( Al-Rasheed Bank) by using Visio to design and draw the diagrams of the suggested models and adopting the data that have been collected by the interviews with the bank's employees, and the research used the modulation of data in order to find solutions for the research's problem.
The importance of the study Lies in dealing with one of the vital topics at the moment, namely, how to make the information transmitted via
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More
