This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simulations are carried out to demonstrate the impact of the fluctuation rescue effect on the dynamics of the non-autonomous model. The analytical and numerical results show a more coexisted model between prey and predator, which can help any extinction-threatened ecosystem.
The Journal of Studies and Researches of Sport Education (JSRSE)
Abstract:
This research aims to identify the impact of the Layout Ghazi al-Hariri hospital for surgery specialist on customer satisfaction (patients) using the model (Servicescape), the problem of the research represented in the extent to which the hospital management design of the service and Layout hospital aesthetic and functional aspects that fit patients for therapeutic and nursing services , and used the developer scale by (Miles et al., 2012) for data collection, which includes the independent variable in (17) items distributed in three dimensions (Facility aesthetics , hospital cleanliness, and the Layout accessibility ) The dependent variable is the satisfaction of customers (pat
... Show MoreWe propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.
It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.
... Show MoreIn this work, we consider a modification of the Lotka-Volterra food chain model of three species, each of them is growing logistically. We found that the model has eight equilibrium points, four of them always exist, while the rest exist under certain conditions. In terms of stability, we found that the system has five unstable equilibrium points, while the rest points are locally asymptotically stable under certain satisfying conditions. Finally, we provide an example to support the theoretical results.
In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show MoreTo achieve optimal plant growth and production under salt stress, some products were added in adequate quantities to give a good yield, especially bean plants which are sensitive to salinity. For this purpose, this experiment was carried out during the spring growing season in 2022 in Baghdad, to study the effects of humic acid, cytokinin, arginine and their interaction with 9 parameters that reflect the overall traits of vegetative growth and yield of common bean plants Phaseolus vulgaris L. var. Astraid (from MONARCH seeds, China). The factorial design with 3 replicates was used, each with 7 plants treated via foliar spraying or by addition to the soil. The first factor included three groups; H0, H1 and H2 (0, 6, 12 Kg.h-1 H
... Show MoreThis paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a
... Show MoreThe parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreAbstract\
In this research we built a mathematical model of the transportation problem for data of General Company for Grain Under the environment of variable demand ,and situations of incapableness to determining the supply required quantities as a result of economic and commercial reasons, also restrict flow of grain amounts was specified to a known level by the decision makers to ensure that the stock of reserves for emergency situations that face the company from decrease, or non-arrival of the amount of grain to silos , also it took the capabilities of the tanker into consideration and the grain have been restricted to avoid shortages and lack of processing capability, Function has been adopted
... Show More