Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword generation approaches have been proposed by previous research, all with limitations to their honeyword generation processes, limited success in providing all required honeyword features, and susceptibility to many honeyword issues. This work will present a novel honeyword generation method that uses a proposed discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to solve a variety of optimization problems. The presented honeyword generation method will improve the generation process, improve honeyword features, and overcome the issues of previous techniques. This study will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology, examine the experimental results, and compare the new honeyword production method to those proposed in previous research.
In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
This study deals with an important area in the field of linguistics, namely person deixis.
The study aims at: (1) Describing the notion of deixis, its importance, and its place in the field
of linguistics, (2) Presenting a detailed illustration of person deixis, and (3) Conducting an
analysis of person deixis in one of Synge‟s plays Riders to The Sea according to Levinson‟s
model. The most important aim of these three is the third one (the analysis). To achieve this
aim, the researcher depends on Levinson‟s (1983) descriptive approach. According to the
descriptive approach of deixis, the category of person deixis can be defined as the encoding of
the participant roles in the speech situation. This encoding is r
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreThe integration of decision-making will lead to the robust of its decisions, and then determination optimum inventory level to the required materials to produce and reduce the total cost by the cooperation of purchasing department with inventory department and also with other company,s departments. Two models are suggested to determine Optimum Inventory Level (OIL), the first model (OIL-model 1) assumed that the inventory level for materials quantities equal to the required materials, while the second model (OIL-model 2) assumed that the inventory level for materials quantities more than the required materials for the next period. &nb
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreThe image caption is the process of adding an explicit, coherent description to the contents of the image. This is done by using the latest deep learning techniques, which include computer vision and natural language processing, to understand the contents of the image and give it an appropriate caption. Multiple datasets suitable for many applications have been proposed. The biggest challenge for researchers with natural language processing is that the datasets are incompatible with all languages. The researchers worked on translating the most famous English data sets with Google Translate to understand the content of the images in their mother tongue. In this paper, the proposed review aims to enhance the understanding o
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
الكلمات المشتقة من الاعداد