Acinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates were carried out followed by DNA extraction from 36 isolates and six negative ATCC strains (Salmonalle typhi, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Enterobacter aeruginosa, Staphylococcus aures) and only one positive control ATCC A. baumannii using Phenol/Chloroform method. AuNPs were synthesized using the citrate reduction method and examined by XDR, FTIR, UV-VIS, FE-SEM, and TEM. The optimized colorimetric assay was employed based on unmodified spherical AuNPs and PCR amplification of 16S rRNA intergenic spacer sequences (ITS) with species-specific DNA oligo-targeters. Detection and optimization of A. baumannii amplicons using unmodified AuNPs were performed based on species-specific DNA oligonucleotide. The AuNPs assay was able to colorimetrically detect and distinguish A. baumannii from other ATCC bacterial isolates. The turnaround time of this assay was about 3 hours, including sample preparation and amplification, to show (0.025-6 ngµl-1) as a detection limit of DNA concentration. The efficacy of colorimetric detection was proved to effectively diagnose A. baumannii isolates with high sensitivity, simplicity, and robustness to rapidly diagnose A. baumannii isolates from different clinical samples.
Commercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show MorePathogenic microorganisms from hospitals, communities, and the environment remain great threats to human health. The increasing concern about antibiotic resistance has also necessitated the search for robust alternatives. Therefore, this study aims to isolate, screen and evaluate the antibiotic susceptibility of Pseudomonas aeruginosa isolated from a soil sample taken from northern, western and eastern parts of Kelana Jaya Lake against four antibiotics (gentamycin, tetracycline, ampicillin, and penicillin) on a Mueller-Hinton Agar media plate. Pseudomonas identification was done by using API 20 kit. Disc diffusion was employed as well as the oxidase test. From the positive oxidase result, the isolated bacteria were identified as Burkhold
... Show MoreBackground: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreMedicinal plants are a source for a wide variety of natural active compounds and are used for the treatment of diseases throughout the world. Conocarpus erectus L. widely planted all over Iraq and has different secondary metabolites, which has been used in treatment of anemia, cancer, fever and diarrhea. The present study aims to estimate the antibacterial activity of Conocarpus erectus leaves extracts on some microorganisms collected from patients with burn infection. The study began with the collection of Conocarpus erectus leaves in June 2018 from the trees in university of Baghdad. Maceration method was used to prepare aqueous extract, while Soxhelt apparatus was used to prepare methanolic extract. The results of phytochemical test show
... Show MoreThe mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms