Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Secure Smart Contract Based on Blockchain to Prevent the Non-Repudiation Phenomenon
...Show More Authors

Blockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (14)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (11)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Scripta Medica
The value of dynamic contrast-enhanced MRI and diffusion-weighted sequence in the evaluation of endometrial lesions
...Show More Authors

Background/Aim: Endometrial abnormalities represent a diagnostic challenge due to overlapping imaging features with normal endometrium. Aim of this study was to assess accuracy of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging (MRI) in evaluation of endometrial lesions in comparison with T2 and to assess local staging validity and degree of myometrial invasion in malignancy. Methods: Forty patients with abnormal vaginal bleeding or sonographic thickened endometrial were recruited. MRI examination of pelvis was per-formed using 1.5 T scanner with a pelvic array coil. Conventional T1-and T2, dynamic contrast-enhanced (DCE) sequences and diffusion-weighted image (DWI) were performed. Results: Mean age of pa

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane
...Show More Authors

The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Wed Mar 28 2018
Journal Name
Indian Journal Of Natural Sciences
Detection of the Main Mycotoxins in Feed of Horses in Al-Zawra'a Park and Study their Effects on Hematological Feature
...Show More Authors

Preview PDF
Publication Date
Wed Jan 02 2019
Journal Name
Journal Of Educational And Psychological Researches
A training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students
...Show More Authors

       The current research aims to build a training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students. To achieve the objectives of the research, the following hypothesis was formulated:

   There is no statistically significant difference at (0.05) level of significance between the average grades of the students participating in the training program according to the knowledge economy and the average grades of the students who did not participate in the training program in the test of productive thinking. The study sample consisted of (288) second intermediate grade students divided into (152) for the control group

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Effectiveness of an Instructional program on patients with ulcerative colitis adherence for Medication and Diet to prevent Colorectal Cancer: case and control study
...Show More Authors

ABSTRACT:

Objectives: The study aims to know the effectiveness of the educational program in the patient’s adherence to medication and diet and to know the relationship between the effectiveness of the education program and their demographic data related to the patient’s age, gender, marital status, education level, occupation, monthly income and residence.

Methodology: A quasi -experimental design study was performed on patient who attended to Gastroenterology and Hepatology Teaching Hospital, from March 2021 to September 2021. The non-probability sampling including 50 patients for case study and 30 patients for control group. The questionnaire consists of 3 parts, part one the socio

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
Prestressing Effects on Full Scale Deep Beams with Large Web Openings¨: An Experimental and Numerical Study
...Show More Authors

Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (608)
Crossref (605)
Scopus Clarivate Crossref