Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreRepresent the current study and tagged (the credibility of digital image and its reflection on the process of cognitive picture releases) scientific effort is designed to detect realizing press releases and the extent affected the credibility of the digital image by selecting the relationship between digital photo and the extent of their credibility on the one hand and between the process of cognition and Press Photo of the hand Other than the consequent establishment researcher collects materials to serve the scientific research topic in three chaptersCombine the first one methodological framework for the search of the research problem and its significance and the desired objective be achieved together with the definition of the most im
... Show MoreCheckpoint inhibitors are a type of immune therapy used to treat different types of cancers. These drugs block different checkpoint proteins, for example, CTLA-4, PD-1, and PD-L1 inhibitors.
They block proteins that stop the immune system from attacking the cancer cells. Checkpoints are also described as a type of monoclonal antibody that antagonizes binding between B7 to CTLA-4 and PD-L1 to PD-1.
Immune checkpoint inhibitors are used to treat BARCA mutated triple-negative breast cancer (TNBCS) in patients who do not respond to chemotherapy, and also in the treatment of highly mutated and solid tumors such as brain tumors, liver, and pancreatic cancers.
Immune checkpoint inhibitors exhibit an effect on solid tumo
... Show MoreThe aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial
... Show MoreThe ultimate goal of any sale contract is to maximize the combined returns of the parties, knowing that these returns are not realized (in long-term contracts) except in the final stages of the contract. Therefore, this requires the parties to the contract to leave some elements open, including the price, because the adoption of a fixed price and inflexible will not be appropriate to meet their desires when contracting, especially with ignorance of matters beyond their will and may affect the market conditions, and the possibility of modifying the fixed price through The elimination is very limited, especially when the parties to the contract are equally in terms of economic strength. Hence, in order to respond to market uncertainties, the
... Show MoreHand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discover
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreBreast cancer is the commonest cause of cancer related death in women worldwide. Amplification or over-expression of the ERBB2 (HER/neu) gene occurs in approximately 15-30% of breast cancer cases and it is strongly associated with an increased disease recurrence and a poor prognosis. Determination of HER2/neu status is crucial in the treatment plan as that positive cases will respond to trastuzumab therapy. It has been used to test for HER2/neu by immunohistochemistry as a first step and then to study only the equivocal positive cases (score 2+) by in situ hybridization technique. The aim of our study is to compare between immunohistochemistry and silver in situ hybridization (SISH) in assessment of human epidermal growth factor (HER2/neu)
... Show MoreIn this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.