Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
This paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreAbstract
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreIn the present study, chitosan Schiff base has been prepared from chitosan reaction with p-chloro benzaldehyde. The AuNPs and AgNPs were manufactured by extract of onion peels as a reducing agent. The AuNPs and AgNPs that have been synthesized were characterized through UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan / PEG has been prepared by using the approach of solution casting. Chitosan Schiff base / PEG Au and Ag nanocomposites were synthesized, nanocomposites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1693 cm-1 as a result of the (C=N) imine group. FESEM, DSC and TGA confirm the thermal stability
... Show MoreIn this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
This study is pointed out to estimate the effectiveness of two solvents in the extraction and evaluating the active ingredients and their antioxidant activity as well as anti-cancer efficiency. Therefore, residues from four different Brassica vegetables viz. broccoli, Brussels sprout, cauliflower, and red cherry radish were extracted using two procedures methods: methanolic and water crude extracts. Methanol extracts showed the highest content of total phenolic (TP), total flavonoids (TF), and total tannins (TT) for broccoli and Brussels sprouts residues. Methanolic extract of broccoli and Brussels sprouts residues showed the highest DPPH· scavenging activity (IC50 = 15.39 and 18.64 µg/ml). The methanol and water ex
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreMaintaining and breeding fish in a pond are a crucial task for a large fish breeder. The main issues for fish breeders are pond management such as the production of food for fishes and to maintain the pond water quality. The dynamic or technological system for breeders has been invented and becomes important to get maximum profit return for aquaponic breeders in maintaining fishes. This research presents a developed prototype of a dynamic fish feeder based on fish existence. The dynamic fish feeder is programmed to feed where sensors detected the fish's existence. A microcontroller board NodeMCU ESP8266 is programmed for the developed h
... Show More