Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Voice Identification Using MFCC and Vector Quantization
...Show More Authors

The speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pi

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Ant Colony Optimization Based Force-Position Control for Human Lower Limb Rehabilitation Robot
...Show More Authors

The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 20 2018
Journal Name
Physical Review E
Dynamical density-functional-theory-based modeling of tissue dynamics: Application to tumor growth
...Show More Authors

View Publication Preview PDF
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Selecting the optimal movement subset with different pattern recognition based EMG control algorithms
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms based Path Planning for Mobile Robots
...Show More Authors

In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot.  Simulation results, whi

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Agronomy Journal
Use of Rainfall Data to Improve Ground-Based Active Optical Sensors Yield Estimates
...Show More Authors

Ground-based active optical sensors (GBAOS) have been successfully used in agriculture to predict crop yield potential (YP) early in the season and to improvise N rates for optimal crop yield. However, the models were found weak or inconsistent due to environmental variation especially rainfall. The objectives of the study were to evaluate if GBAOS could predict YP across multiple locations, soil types, cultivation systems, and rainfall differences. This study was carried from 2011 to 2013 on corn (Zea mays L.) in North Dakota, and in 2017 in potatoes in Maine. Six N rates were used on 50 sites in North Dakota and 12 N rates on two sites, one dryland and one irrigated, in Maine. Two active GBAOS used for this study were GreenSeeker and Holl

... Show More
View Publication
Publication Date
Sun Apr 02 2023
Journal Name
Narst 2023 Annual International Conference
Measuring Claim-Evidence-Reasoning Using Scenario-based Assessments Grounded in Real-world Issues
...Show More Authors

Improving students’ use of argumentation is front and center in the increasing emphasis on scientific practice in K-12 Science and STEM programs. We explore the construct validity of scenario-based assessments of claim-evidence-reasoning (CER) and the structure of the CER construct with respect to a learning progression framework. We also seek to understand how middle school students progress. Establishing the purpose of an argument is a competency that a majority of middle school students meet, whereas quantitative reasoning is the most difficult, and the Rasch model indicates that the competencies form a unidimensional hierarchy of skills. We also find no evidence of differential item functioning between different scenarios, suggesting

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref