Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Using Backpropagation to Predict Drought Factor in Keetch-Byram Drought Index
...Show More Authors

Forest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data

... Show More
View Publication Preview PDF
Clarivate Crossref
Publication Date
Fri Dec 09 2022
Journal Name
Molecules
Palm Raceme as a Promising Biomass Precursor for Activated Carbon to Promote Lipase Activity with the Aid of Eutectic Solvents
...Show More Authors

This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (

... Show More
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Enhancing the Accuracy of Health Care Internet of Medical Things in Real Time using CNNets
...Show More Authors

     This paper presents an efficient system using a deep learning algorithm that recognizes daily activities and investigates the worst falling cases to save elders during daily life. This system is a physical activity recognition system based on the Internet of Medical Things (IoMT) and uses convolutional neural networks (CNNets) that learn features and classifiers automatically. The test data include the elderly who live alone. The performance of CNNets is compared against that of state-of-the-art methods, such as activity windowing, fixed sample windowing, time-weighted windowing, mutual information windowing, dynamic windowing, fixed time windowing, sequence prediction algorithm, and conditional random fields. Th

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Elderly Healthcare System for Chronic Ailments using Machine Learning Techniques – a Review
...Show More Authors

     World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions.  This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
Climatic Water Balance in AL-Amaid Area/ Muthana Governorate/ Southwest Iraq
...Show More Authors

     Ground water is a vital source for agricultural sector and rural communities. The global climate change is expected to change the hydrometeorological processes parameters. The climate considered as part of the southern Iraqi desert general climate with long, extremely hot, and dry summer and short wet period with little rain.  So it is vital to investigate the groundwater quality for irrigation purposes. The meteorological data of Samawa meteorological station for the period 1980-2015 was used to evaluate the climatic conditions for Muthana Governorate. It was found that the averages of annual rainfall was 105.7mm and the everages of evaporation is 3182 mm, while the mean monthly relative humidity % , mean t

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 11 2017
Journal Name
Journal: Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and Characterization of some Metal Complexes with (3Z ,5Z, 8Z)-2-azido-8-[azido(3Z,5Z)-2-azido-2,6- bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide(L-AZ) .
...Show More Authors

The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i

... Show More
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Test the Cytotoxicity of Pleurotin Extracted from an Edible Mushroom Pleurotus osteratus Against Three Human Carcinoma Cell Line
...Show More Authors

The study included selection six species of the fungi related to Pleurotus genus were evaluated for their ability to production of Pleurotin, one of them, Pleurotus ostreatus (P.11) was isolated and identified in the present study. Pleurotin was extracted with screening by Thin Layer Chromatography (TLC) and quantification High Performance Liquid Chromatography (HPLC). Cytotoxicity of Pleurotin extracted from P. ostreatus (P.11) grown in different sugar sources (galactose, mannitol, sucrose, dextrose and lactose) liquid media was test against three selected cancer cell lines, CaSki, MCF-7 and A549 addition to Human Non Cancer Fibroblast Cell Line (MRC-5). Pleurotin of P. ostreatus (P.11) grown in galactose induced the significant highest

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Quality of University Education at the Middle Technical University in The Light of the Application of National Ranking project for the Quality of Iraqi Universities
...Show More Authors

The research aims to identify ways of upgrading the quality level of university education at the Middle Technical University in light of its application for the National Ranking project for the quality of Iraqi universities in order to obtain advanced grades among the Iraqi universities , Which is qualified to enter the Ranking of universities worldwide, through displaying the mechanism of the Application of  National Ranking project for the quality of Iraqi universities in the Middle Technical University and its formations consisting of (5) technical colleges and (11) technical institute.

        The results of the application showed several observations: The most

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement of Generative Adversarial Networks to Generate Digital Color Images of Skin Diseases
...Show More Authors

     The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref