Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreIn this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
The research tagged (functional enhancement and its reflection on industrial product systems) focused on the possibility of enhancing industrial products in terms of form and functionality in a way that they are able to meet the needs of the user through the impact of technology and modern technologies on the functional enhancement of industrial products and their effectiveness in achieving formal and functional design variables, and producing products Industrial products are highly efficient and durable in order to improve them in order to meet the needs of the user, the transfer of technology between life forms and industrial products is desirable because the functional enhancement processes that occurred in general on industrial produ
... Show MoreObjective To highlight the main demographic characteristics and clinical profiles of female patients registered with breast cancer in Iraq; focusing on the impact of age.Methods This retrospective study enrolled 1172 female patients who were diagnosed with breast cancer at the Main Center for Early Detection of Breast Cancer/Medical City Teaching Hospital in Baghdad. Data were extracted from an established information system, developed by the principal author under supervision of WHO, that was based on valid clinical records of Iraqi patients affected by breast cancer. The recorded information regarding clinical examination comprised positive palpable lumps, bloody nipple discharge, skin changes, bilateral breast involvement, tumor
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show More