Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
A lower extracellular pH is one of the few well-documented physiological differences between tumour and normal tissues. On the other hand, elevated glutathione (GSH) level has been detected in many tumours compared with healthy surrounding tissues. The compound II: 3-(9H-purin-6-yl-thio) carbonothionyl methyl-8-oxo-7-(2-thiophen-2-yl) acetamido-5-thia-1-azabicyclo-4-octo-ene-carboxylic acid was a cephalothin derivative contain 6-mercaptopurine (6-MP). Compound II react with general base catalysis in slightly acidic pH or with sulfhydryl nucleophiles to release the chemotherapeutic drug 6-MP. The generation of compound II was accomplished following multistep reaction procedures. The structure of compound II and its intermediate was confir
... Show MoreCD63 is -one of the tetraspanin family proteins, which are regarded as: hallmark exosomal markers because it is absent from other types of vesicles. It is expressed in the cell membrane of cancer cells, and cytoplasm of stromal cells. Objective: To assess CD63 expression in gastric cancer (GC) patients, and detected if it could be used as a predictive marker. Furthermore, the current study aimed to find the correlation between CD63 expression and clinicopathological parameters as: gender, age, invasion depth, histopathological type, involvement of lymph nodes, grade and stages of GC (TNM). The current study is a retrospective study in the period time from (2018 to-2020); 50 randomly patients formalin-fixed paraffin embedded blocks (FFPE)
... Show MoreCervical Uterine Cancer is a disease that explains the vulnerability in which women are in terms of reproductive health with an impact on occupational health and public health, even when in Mexico the prevalence rate is lower than the other member countries of the OECD, its impact on Human Development and Local Development shows the importance that the disease have in communities more than in cities where prevention policies through check-ups and medical examinations seem to curb the trend, but show the lack of opportunities and capacities of health centers in rural areas. To establish the reliability, validity, and correlations between the variables reported in the literature with respect to their weighting in a public hospital. A
... Show MoreLanguage Teaching & Leaning Problems at the Iraqi university level: Image & Reality
A QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.