Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Nations are developed with education and knowledge that raise the status of society in its various segments, beyond that it leads to underdevelopment and deterioration in various sectors, whether economic, health, social, etc. If we considered the general name of The ministry of Education & Scientific Studies, then the second part seems to be not functioning, since scientific research has no material allocation and remains based on the material potential of the university professor. As for the first half of the topic, the reality of the situation reveals problems related to the Holy Trinity of Education which is (Professor - Student - the scientific method) where universities suffer at the present time from this problem, and
... Show MoreBackground: The problem of difficult gallbladder is not clearly defined and associated with real missing of therapeutic approaches that decreased morbidity. Moreover, the difficult gallbladder was reported as a contributing risk factor for biliary injury due to raised difficulty in surgical dissection within Calot’s triangle. The aim of this study is to determine the surgical outcomes of the open fundus-first cholecystectomy in lowering the rate of lethal intraoperative risks.
Subjects and Methods: Our prospective study conducted during the period of January 2019 to December 2022 at Ibn Sina specialized hospital, Khartoum, Sudan, for two hundred and fifty-three patients underw
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreInfectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.
This matter represents not only a scientific endeavor but also an essenti
... Show MoreThe research aims at analyzing the indicators of the sovereign credit of oil and without oil to determine the face of the Iraqi economy from the challenges that would impede the process of growth and economic development for the period (2004-2015).
the research tries to show some lessons to be learned from those indicators, Many of the most important conclusions, acceptance of the hypothesis of research and the weakness of sovereign credit capacity in Iraq to bear the sovereign debt and its burden and work to achieve sustainable economic and social development "in an economy in which oil is neutralized as a single commodity depends on them to meet the requirements of efficiency and efficiency
... Show MoreThe ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
This research deals with the frameworks and mechanisms of international press coverage of the issue of foreign interference in the formation of the Iraqi government in the Saudi newspapers Asharq Al-Awsat and Kayhan Al-Arabi Iran and how this topic was addressed in the two newspapers. The frameworks for international press coverage of external interference in the formation of the Iraqi government. ”This research is one of the descriptive research that adopted the survey method، which made it possible to use the content analysis tool to analyze
the content of the two newspapers، whose numbers are (624) from the
newspapers (Al-Sharq Al-Awsat Al-Saudi Arabia and Kayhan Al-Arabi Iran) from (1/1/2018 to 31/12/2018)، and the researc
Arab translators have always paid great attention to the translation of the Persian literary genres, in particular, contemporary Iranian novels. They have always translated for the most prominent Iranian novelists such as Jalal Al Ahmad, Sadiq Hidayat, Mahmoud Dowlatabadi, Bozorg Alavi, Ismail Fasih, Houshang Golshiri, Gholam-Hossein Saedi, Simin Daneshvar, Sadiq Chubak, Samad Behrangi and others that have succeeded in perfectly picturing the Iranian society.
Within the perspectives of Arab translators and by using the descriptive - analytical approach, the present study provides an analytical study of the translation into Arabic some of the modern Persian novels. Moreove
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show More