Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 30 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Evaluating the extent of the response of the tax administration leaders towards the concept of the strategic lens and its relationship to tax pioneer performance: Applied Research in the General Authority for taxes
...Show More Authors

The aim of the research is to evaluate the response of the researched leaders towards practicing the concept of the lens, which is its dimensions with (stakeholders, resource mobilization, knowledge development, culture management) and the nature of its relationship to tax pioneer performance represented in its dimensions (strategic direction, leadership indicators, growth, renewal and modernization, efficiency, Effectiveness) The questionnaire was approved as a main tool in collecting data and information from the sample members in the General Authority of Taxes, which number (91) Who are on (M. General Manager, Division Director, Deputy Director, Senior Division Director, Deputy Director, Second Division, Division Officer, M. D

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 23 2025
Journal Name
Journal Of Physical Education
A comparative analysis , for some Elkinmetekih variables , in the performance of the skill (Nick shot the front reverse ) , between the players of the Iraqi team and the Egyptian , for young people in squash
...Show More Authors

View Publication
Publication Date
Mon Apr 01 2019
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Assessment of vegetable cover in south Iraq by remote sensing methods
...Show More Authors

The vegetable cover plays an important role in the environment and Earth resource sciences. In south Iraq, the region is classified as arid or semiarid area due to the low precipitations and high temperature among the year. In this paper, the Landat-8 satellite imagery will be used to study and estimate the vegetable area in south Iraq. For this purpose many vegetation indices will be examined to estimate and extract the area of vegetation contain in and image. Also, the weathering parameters must be investigated to find the relationship between these parameters and the arability of vegetation cover crowing in the specific area. The remote sensing packages and Matlab written subroutines may be use to evaluate the results.

Preview PDF
Scopus
Publication Date
Tue Dec 31 2019
Journal Name
Iraqi Geological Journal
CLIMATIC WATER BALANCE FOR ISHAQI AREA, SALAH AL-DEAN GOVERNORATE, IRAQ
...Show More Authors

In any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by

... Show More
View Publication
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Monitoring Vegetation Area in Baghdad Using Normalized Difference Vegetation Index
...Show More Authors

       Vegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jun 04 2022
Journal Name
Al–bahith Al–a'alami
The relationship of using the social networking site Facebook to the accumulation of social capital: (Survey study for a sample of students from the University of Algiers 3)
...Show More Authors

The subject of social capital is of great importance, as it provides an analytical framework for researchers interested in understanding the impact of the Internet on many dimensions of human and social life. And because social networking sites have infiltrated societies and produced new variables at the level of human and social communication, this study came to examine the relationship between the use of the social networking site Facebook and the accumulation of social capital among a sample of University of Algeria 3 students, by researching the variables of intensity of use and patterns of use as independent variables and their relationship to social capital. The results of the field study revealed a strong relationship between the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Graphene, Nanotubes And Quantum Dots-based Nanotechnology
Functionalized nanotubes
...Show More Authors

Deep eutectic solvents (DESs) are considered as relativity green solvents in comparison with ionic liquids and organic solvents. DESs are used in nanotechnology applications due to their unique physiochemical properties, efficient dispersants and they can be easily prepared in high purity at low cost. Other advantages include their nontoxicity, no reactivity with water and being biodegradable. DESs have recently attracted much attention in various fields, especially in the field of nanotechnology in controlling the size, surface chemistry and morphology of the nanomaterials and in the processing of advanced functional nanomaterials. As a result, various studies have been undertaken to investigate the physicochemical characteristics of the c

... Show More
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec

... Show More
View Publication Preview PDF
Crossref (1)
Crossref