Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Ultrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing
... Show MoreA calamitic symmetric liquid crystalline consisting of an azo group containing 5H-Thiazolo[3,4-b][1,3,4]thiadiazole moiety compound[III] was synthesized via sequence reactions starting from reaction terephthaldehyde with mercaptoacetic acid and thiosemicarbazide in the presence of concentrated sulfuric acid to synthesized 5,5'-(1,4-phenylene)bis(5Hthiazolo[4,3-b][1,3,4]thiadiazol-2-amine)[I] then the azo compound [II] synthesized by coupling between diazonium salt of the compound [I] with phenol at (0-4) ̊C., after that the compound [III] was synthesized by the reaction of the compound [II] with methyl bromide in alkaline media. The compounds are characterized by melting points, FTIR and 1HNMR spectroscopy. The mesomorphic behavior was stu
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreEach sport has its own energy requirements that differ from the energy requirements of other sports, and a different method is used in each of them, so the trainer must first rely on the principle of privacy in training first, that is, privacy according to the working energy system, that is, he defines the controlling energy system In that event, and how the muscles use the available energy to perform according to the energy production systems. As we find the serving skill is the first volleyball skill with which the team starts the match in order to be able to gain points directly, through knowledge it turns out that there is a weakness in the skill performance, especially the skill of serving and being The key to victory for volle
... Show MoreA tunable band pass filter based on fiber Bragg grating sensor using an in-fiber Mach-Zender interferometer with dual micro-cavities is presented. The micro-cavity was formed by splicing together a conventional single-mode fiber and a solid core photonic crystal fiber (SCPCF) with simple arc discharge technique. Different parameters such as arc power, length of the SCPCF and the overlap gap between samples were considered to control the fabrication process. The ellipsoidal air-cavity between the two fibers forms Fabry-Perot cavity. The diffraction loss was very low due to short cavity length. Ellipsoidal shape micro-cavities were experimentally achieved parallel to the propagation axis having dimensions of (24.92 – 62.32) μm of width
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.