Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
In this paper it is required to enhance the performance of a mechanical system (here: a Hoisting System) where it is preferred to lift a different payloads with approximately the same speed of lifting and keeping at the same time the good performance, and this of course needs some intelligence of the system which will be responsible on measuring the present load and taking into account the speed and performance desired in order to achieve the requirements or the criteria. The process therefore is a Mechatronics System design which includes a measuring system, a control or automation technique, and an actuating system. The criteria built here in this research using a given Hoist system's characteristics and parameters and changing one of
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreBackground: The study's objective was to estimate the effects of radiation on testosterone-related hormones and blood components in prostate cancer patients. N Materials and Method: This study aims to investigate the effects of radiation on 20 male prostate cancer patients at the Middle Euphrates Oncology Centre. Blood samples were collected before and after radiation treatment, with a total dose of 60- 70 Gy, The blood parameters were analyzed. The hospital laboratory conducted the blood analysis using an analyzer (Diagon D-cell5D) to test blood components before and after radiation. Hormonal examinations included testosterone levels, using the VIDASR 30 for Multiparametric immunoassay system Results: The study assessed the socio-demogra
... Show MoreWheat is rich in sources of fiber, oligosaccharides, and resistant starch, simple carbohydrates which may have a protective role against carcinoma. Additionally, Whole wheat/bran as well includes contains phytochemicals such as flavonoids, lignans, folate, phytosterols, phenolic acids, and tocols. The above phytochemicals suitable forms antioxidant and cholesterol-reducing activities. Phytoestrogens are regarded as especially essential in the preventative measures of hormonally dependent malignancies such as breast cancer (BC). In this study lowered BC risk has been associated with whole grain/bran consumption with an odds ratio (OR=0.24 and 95 %CI=0.10-0.56). Wheat/bran appears to have a reliable protective impact against BC. While intake
... Show MoreObjectives: To assess the relation between breast cancer & blood groups, identify the importance of women
age group and the relation of age with breast cancer.
Methodology: The study was performed on (115) women who were diagnosed with breast cancer in different
stages of disease and different ages. Blood samples were taken from them to demonstrate their blood groups and
(20) fresh tumor tissue samples were obtained; the tumor tissue used as a source of lectin for hemagglutinate
with erythrocyte of different blood groups. The study conducted at Baghdad Teaching Hospital and Radiation &
Nuclear Medicine Hospital from January, 2007 through June 2007.
Results: The study shows that the highest percentage of women
Incremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show More