In this research study the effect of fish on the properties optical films thickness 1200-1800 and calculated energy gap Basra direct transport permitted and forbidden to membranes and urged decreasing values ??of Optical Energy Gap increase fish included accounts optical also calculate the constants visual as factories winding down and the refractive index and reflectivity membranes also by real part and imaginarythe dielectric constant
Antimony (Sb) films are fabricated by depositing (Sb) on glass substrates at room
temperature by the method of vacuum evaporation with thickness (0.25 and 0.51m),
with rate of deposition equal to (2.77Å/sec), the two samples are annealed in a
vacuum for one hour at 473K. The optical constants which are represented by the
refractive index (n), extinction coefficient (k) were determined from transmittance
spectram in the near Infrared(2500-3500 )nm regions. The tests have been shown
that the optical energy gap increases with increasing of annealing temperature for
the two samples.
Thin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
In this work, lead oxide (PbO) thin films were deposited using D.C. sputtering method on a surface of glass substrates and then thermally annealed at a temperature of 473K with annealing times of (1,2 and 3) hours. The structural, morphological, and optical properties of films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), FT-IR, and UV-Visible spectroscopy. The structure studies confirmed that PbO films are polycrystalline structures in an orthorhombic phase with average grain size (24.51, 29.64, 46.49, 16) nm with increasing annealing time. From AFM, the roughness of the film surface (3.26, 1.76, 1.61, 1.79) nm as the film annealing time increases. The optical band gap values of the PbO thin fi
... Show MoreIn this paper, Zinc oxide were deposited on a glass substrate at room temperature (RT) and two annealing temperatures 350ºC and 500ºC using laser induced plasma technique. ZnO nanofilms of 200nm thickness have been deposited on glass substrate. X-RAY diffraction (XRD), atomic force microscopy and UV-visible spectrophotometer were used to analyze the results. XRD forms of ZnO nanostructure display hexagonal structure with three recognized peaks (100), (002), and (101) orientations at 500ºC annealing temperature. The optical properties of ZnO nanostructure were determined spectra. The energy gap was 3.1 eV at 300 oC and 3.25eV at 500ºC annealing temperature.
Thin films of ZnSe arc deposited on glass substrates by thermal evaporation in vacuum with different thickness (1000, 2700, 4000) A° temperature (293-373) °K are studies the electrical properties before and after annealing. The result show decrease D.0 conductivity and increasing the activation energy Eat.
This research aims to study the effect of different pH values on the growth of CdTe nanoparticles during specific times. The reflux method has been used as a method for preparing CdTe quantum dots. A difference in absorbance and intensities of peaks at pH 10.5 and 11.5 was observed during the reaction period. The growth rate of the NPs (nucleation) was irregular at low pH values. Optical examinations showed that the best growth rate of NPs was at pH value 12.
Zinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreIn this work, Titanium oxide thin films doped with different concentration of CuO (0,5,10, 15,20) %wt were prepared by pulse laser deposition(PLD) technique on glass substrates at room temperature with constant deposition parameter such as : pulse (Nd:YAG), laser with λ=1064 nm, constant energy 800 mJ , repetition rate 6 Hz and No. of pulse (500). The structure , optical and electrical properties were studied . The results of X-ray diffraction( XRD) confirmed that the film grown by this technique have good crystalline tetragonal mixed anatase and rutile phase structure, The preferred orientation was along (110) direction for Rutile phase. The optical properties of the films were studied by UV-VIS spectrum in the range of (360-1100)
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.