The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
In this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; j = , δ, α, pre, b, β
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreAdsorption and ion exchange are examples of fixed-bed sorption processes that show transient behavior. This means that differential equations are needed to design them. As a result, numerical methods are commonly utilized to solve these equations. The solution frequently used in analytical methods is called the Thomas solution. Thomas gave a complete solution that adds a nonlinear equilibrium relationship that depends on second-order reaction kinetics. A computational approach was devised to solve the Thomas model. The Thomas model's validity was established by conducting three distinct sets of experiments. The first entails the adsorption of acetic acid from the air through the utilization of activated carbon. Following
... Show MoreThe soil acari fauna of Citrus orchards of Baghdad in Jadiriya area was studied in a total
of forty-eight samples. Twenty-two species were recorded during the present study of which
eight species were first records to Iraq. The ordinal composition of the soil acari fauna was
predominantly Mesostigmata.
This fauna represents diverse trophic groups. The most abundant groups were the
predacious and the Microphytophagus, while the less abundant groups were the predacious/
Microphytophagus, Macrophytophagus, and Panaphytophagus. The most abundant and
frequent species were Rhizoglyphus sp. Tyrophagus putrescentiea (Scrank), Pachylaelaps
longisetis Halbt. and Stratiolaelaps miles Berl.
The demand for single photon sources in quantum key distribution (QKD) systems has necessitated the use of weak coherent pulses (WCPs) characterized by a Poissonian distribution. Ensuring security against eavesdropping attacks requires keeping the mean photon number (µ) small and known to legitimate partners. However, accurately determining µ poses challenges due to discrepancies between theoretical calculations and practical implementation. This paper introduces two experiments. The first experiment involves theoretical calculations of µ using several filters to generate the WCPs. The second experiment utilizes a variable attenuator to generate the WCPs, and the value of µ was estimated from the photons detected by the BB
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
The state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite
... Show More