A new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar construction is proposed for Pd(II), while a Tetrahedral Geometry for Cobalt (II)complex. All of the complexes which were prepared displayedobviousconstancy and could be stored for months without showing any considerablealteration. Semi-empirical methods (ZINDO/1, ZINDO/S & PM3) were conducted to assess the heat of formation ∆H˚f, binding energy ∆Eb, and dipole moment for all compounds as theoretic study. The complexes expressnotable biological activities to pathogenic bacteria when inspected on certain bacteria. The synthesized compounds exhibited moderate toverygood antibacterial activity against bacterial strains, i.e., Escherichiacoli, Staphylococcus aureus & Pseudomonas aeruginosa.
Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreThe base of the ELWE MPF-1 microcomputer is the Z80 microprocessor. The Z80 programs are written in assembly language. The main advantage of assembly language is that: it is much faster to code and the mnemonics makes it easier for the user to remember the instruction. The purpose of this paper is to improve the monitor process for didactic microcomputer ELWE MPF-1 by appending new powerful commands (MOVE, FILL, SEARCH and COMPARE) to the existing monitor to make it more useful and flexible. 8085 assembly language is used to execute this program. The letters used for abbreviation: M for MOVE, F for FILL, S for SEARCH and C for COMPARE.
Computer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show More