Development of a precise and delicate reaction has been acquired for the determination of vancomycin hydrochloride using batch and cloud point extraction (CPE) methods. The first method is based on the formation of azo dye as a result of diazotized dapsone coupled with vancomycin HCl (VAN) in a basic medium. The sensitivity of this reaction was enhanced by utilizing a nonionic surfactant (Triton X-114) and the cloud point extraction technique (second method). The azo dye formed was extracted into the surfactant-rich phase, dissolved in ethanol and detected at λmax 440 nm spectrophotometrically. The reaction was investigated using both batch and CPE methods (with and without extraction), and a simple comparison between the two developed methods was made. The conditions that affect the extraction process and the sensitivity of the methods have been carefully examined. The linearity of the calibration curves was in the range of 3-50 and 0.5- 25 µg.mL-1 with limits of detection of 0.806 and 0.462 µg.mL-1 for VAN in both batch and CPE procedures, respectively. The percentage of relative standard deviation (R.S.D.%) for the two methods was better than 2.54% and 2.83%, respectively. The recommended procedures have been effectively used to assay VAN in commercial injections.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreThis research aims to analyze the indicators of spatial variation in the guide of health field in both Al-Adhamiyah and Rusafa districts according to the environmental and administrative units in 2016. The analysis was done by groups of health guide indicators. The objectives of the study were to identify the spatial variation of health services and assess the health situation for families following the environmental and administrative units of the studied area. Such objectives can be done by specifying the extent of the families’ consent to the type of services, measuring the cases of deprivation, and identifying the most deprived areas. The study has finally concluded that there is a clear spatial variation between the indicators and
... Show MoreDespite scholars’ attention on the typology of modality as a linguistic phenomenon, yet the use of modality across varieties of English is not well visible in communication-based researches that take semantics, pragmatics and discourse issues as the objects for their investigation. The paper generates its data from six M. A. dissertations from Nigerian University and equal number of the M. A. dissertations from Iraqi University to qualitatively and quantitatively investigate the contextual use of modality within the pragmatic perspective. The data analysis reveals that modality such as usuality, potentiality, necessity, probability and obligation in the dissertations encapsulates interpersonal and authorial voice in which the mean
... Show More