The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized.
The study aimed to find out the relationship between the dimensions of internal control systems and the availability of an effective governance framework in the Sudanese banks. The study used descriptive and analytical method for collecting and analyzing the study data using SPSS program. The questionnaire was used as an analysis tool. The target sample of Sudanese bank employees, the study found several results, including that the bank avoids methods that lead to the rational use of available resources, and identifies and separation of tasks among employees, in addition to rapid response to reports The study found several recommendations, including the need for a list of banks that are sufficiently flexible and comp
... Show MoreThe aim of this research is to know danger of radioactive isotopes
that are found in samples of drugs traded in Iraqi markets. The
samples are Iraqi Amoxicillin, English Amoxicillin, UAE
Amoxicillin, Indian Amoxicillin, Iraqi Paracetamol, English
Paracetamol, UAE Paracetamol and Indian Paracetamol. By high
purity germanium the activity of the following isotopes 40K, 214Pb,
228Ac and 137Cs is measured and the specific activity was used to
calculate the annual effective dose. Then the calculated annual
effective dose values are compared with the allowable annual
effective dose values of each part of digestive channel. This research
concluded that the measured annual effective dose values are not
dangerous.<
Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More