Malaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted to analyze the QoS on its traffic, packets transfer, RTT, latency, and throughput. Wireshark simulation program has been used as a network traffic capture where PCAP files have been analyzed by using PCAP Analyzer for Splunk. Traffic filtering has been enabled to capture selected traffic to measure network performance. The result shows that better network performance can be achieved if a smaller number of devices are connected at the same time. The percentage of packet loss, RTT, latency is increased when more users connected at the same time. The throughput also shows a decrease for multi-device connections. Based on the analysis it can be concluded that TM UniFi still can provide good network services for the SOHO network environment and sufficient bandwidth despite the rapid user growth in Malaysia.
Purpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show MoreThe significance of the research conducted in northern Iraq comes despite the expansion of afforestation projects; yet, the suffering of the forests has increased due to their lack of scientific study, unpredictability of the climate, and adverse effects on the spread and growth of plant species Therefore, the goal of the study is to understand the effects of afforestation through a statistical analysis of plant diversity in northern Iraq and its distinctivenessThe analysis revealed that natural groupings had improved qualitatively more than other groups, particularly some dwindling species that are able to compete and occupy new areas. drought-prone vegetation, vegetation, and climat
Purpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreThe study aims to identify the impact of competency-based training in its dimensions (skills, cognitive abilities, attitudes, and attitudes) in improving the performance of employees (achievement, strategic thinking and problem solving) in Jordanian university hospitals.
The study based on analytical descriptive method. The study population consisted of the Jordanian University Hospitals, the University Hospital of Jordan and the King Abdullah Hospital, as applied study case. The sample of the study consists of all upper and middle administrative employees of these hospitals; questionnaire distributed all of them and the number of valid questionnaires for analysis were 182 questionnaire.
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreThe study included the collection of samples of raw cow milk to isolate Leuconostoc bacteria, samples were sub cultured on De-Man Rogosa Sharpe-Vancomycin medium, the pure colonies were selected and subjected to the cultural and microscopically tests, according to that 25 cocci bacterial isolates were obtained, then isolates were subjected to biochemical tests. Result of tests showed that 12 isolates belong to the genus Leuconostoc out of 25 cocci bacterial isolates, Vitek2 system was used as a supplementary step. Results of final identification showed that 3 sub species were obtained included Leuconostoc mesenteroides ssp. cremoris 9 out of 12 isolates, while it was 2 isolates of Leuconostoc mesenteroides ssp. mesenteroides and one isol
... Show MoreAs computers become part of our everyday life, more and more people are experiencing a
variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation,
redness, blurred vision, and double vision, collectively referred to as computer vision syndrome.
The effect of CVS to the body such as back and shoulder pain, wrist problem and neck pain.
Many risk factors are identified in this paper.
Primary prevention strategies have largely been confined to addressing environmental
exposure to ergonomic risk factors, since to date, no clear cause for this work-related neck pain
has been acknowledged. Today, millions of children use computers on a daily basis. Extensive
viewing of the compute
The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est
... Show More