Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.
This article conclude a theoretical study for the possibility to produce additional electric power from Iraqi steam power plants by cutting – off high-pressure feed water heaters . Three separated steam power plants which Dura , south –Baghdad and Nasria were studied . The investigation showed the possibity of increasing the electric power from 10 to 15% for Dura and Nasria , whereas 6% for south – Baghdad . According to the nowadays of operation to Iraqi steam power plants , the results showed that by cutting–off high pressure feed water heaters we can generate additional electric power about 250 MW during 3-4 hrs. daily. In addition, the fuel consumption can be reduced in comparison with diesel generat
... Show MoreUrine samples had been gathered from females living in Baghdad city. The sample consisted of 30 females who suffered from U.T.I (Urinary tract infections) and 20 healthy females. The type of urine U.T.I was specified by the emergency lab in Al-Kindy hospital, and alpha tracks were determined by the nuclear track detector CR-39. The concentrations of alpha in 30 urine samples taken from females who had U.T.I ranged from 0.327ppm-1.583ppm, with an average of 0.94965 ppm. The maximum value 1.583 ppm is belonging to females with an aged 57 years old. The results of healthy female concentration ranged from 0.022 ppm-0.459ppm with an average of (0.30855ppm). The findings revealed that alpha emitter concentrations differed from woman to woman,
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreSummary
I wanted to address this topic because of creedal purposes importance,and its r le in regulating lives of individuals and society, and to talk about purposes of Almighty's saying:{It is easy for me},to simplify its meanings for general educated person to obtain the believe of the Creator’s power and his oneness.
Therefore,this research came,whichincludes:an introduction and topics, first :concept of creedal objectives and their divisions,second: creedal purposes in Almighty’s saying:{It is easy for me},and conclusion:in where most important results were included:
... Show MoreWireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show More