Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.
Urine samples had been gathered from females living in Baghdad city. The sample consisted of 30 females who suffered from U.T.I (Urinary tract infections) and 20 healthy females. The type of urine U.T.I was specified by the emergency lab in Al-Kindy hospital, and alpha tracks were determined by the nuclear track detector CR-39. The concentrations of alpha in 30 urine samples taken from females who had U.T.I ranged from 0.327ppm-1.583ppm, with an average of 0.94965 ppm. The maximum value 1.583 ppm is belonging to females with an aged 57 years old. The results of healthy female concentration ranged from 0.022 ppm-0.459ppm with an average of (0.30855ppm). The findings revealed that alpha emitter concentrations differed from woman to woman,
... Show MoreOne of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreSummary
I wanted to address this topic because of creedal purposes importance,and its r le in regulating lives of individuals and society, and to talk about purposes of Almighty's saying:{It is easy for me},to simplify its meanings for general educated person to obtain the believe of the Creator’s power and his oneness.
Therefore,this research came,whichincludes:an introduction and topics, first :concept of creedal objectives and their divisions,second: creedal purposes in Almighty’s saying:{It is easy for me},and conclusion:in where most important results were included:
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show MoreThe current research aims to find out ( the effectiveness of the structural model of learning in the acquisition of geographical concepts at the first grade average students ) , and achieving the goals of research has been formulating the null hypothesis of the following :
" There is no difference statistically significant when Mistoi (0.5 ) between the mean scores of the collection of students in the experimental group that is studying the general geographical principles " Bonmozj constructivist learning " and the mean scores of the control group , which is considering the same article ," the traditional way " to acquire concepts.
The researcher adopted th
... Show MoreThe convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.