Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA) has been proposed.
Via using the MCA associative memory as a new trend, the proposed module goes through two phases: the
first is the training phase (which is executed once during the module installation process) and the second is
the analysis phase. Both phases will be developed through the use of MCA, each according to its process.
The training phase will take place through the learning phase of MCA, while the analysis phase will take
place through the convergence phase of MCA. The use of MCA increases the efficiency of the training
process for the proposed system by using a minimum number of training images that do not exceed 10
training images of the total number of frames in JPG format. The proposed module has been evaluated using
11,825 images that have been extracted from 11 tested videos. As a result, the module can detect the intruder
with an accuracy ratio in the range of 97%–100%. The average training process time for the training videos
was in the range of 10.2 s to 23.2 s.
The purpose of the study is to identify the need to improve health services in Iraq by determining the efficiency of service in health care centres and working on exploiting limited resources through choosing the most efficient technological art represented by using precast concrete technology to fill the shortfall in the establishment health centres for primary care and to explain the impact of this on saving resources, time, and increasing production efficiency. To achieve this, the quantitative analysis adopted as a methodology in the study by determining the size of the deficit in the infrastructure of health centres for primary care according to the standard of a he
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreA multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show MoreSuffer most of the industrial sector companies from high Kperfi magnitude of the costs of industrial indirect, lack of equitable distribution of these costs on the objectives of cost, increased competition, and the lack of proper planning in line and changes faced by the industrial sector (general) and sample (private), as well as the difficulty in re- directing efforts to improve profitability and in-depth analysis of activities, and to identify untapped resource activities, then link these activities to the final products The research aims to apply the technology review and evaluate programs with the method (ABC) through the application stages of planning, scheduling and control and a comparison to get to the products of dev
... Show MoreAbstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreAkaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
In this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
Advertising technology represents a component of elements of the visual attraction in the urban scape, made its way transmission process of messages between the ends of the source ofinformation (sender) and the Destination information (receiver) of the final recipient of themessage, It serves as a social marked and a means of cultural expression, It is part of the inalienable in creating identity and determine the spatial relationships and also is a reflection ofurban culture to the community. This technology has become an increasing feature of the present era, characterized as the era of the three revolutions: (the information revolution, the technologyrevolution, and the media revolution), Where it became an integral part of the visual
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More