Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA) has been proposed.
Via using the MCA associative memory as a new trend, the proposed module goes through two phases: the
first is the training phase (which is executed once during the module installation process) and the second is
the analysis phase. Both phases will be developed through the use of MCA, each according to its process.
The training phase will take place through the learning phase of MCA, while the analysis phase will take
place through the convergence phase of MCA. The use of MCA increases the efficiency of the training
process for the proposed system by using a minimum number of training images that do not exceed 10
training images of the total number of frames in JPG format. The proposed module has been evaluated using
11,825 images that have been extracted from 11 tested videos. As a result, the module can detect the intruder
with an accuracy ratio in the range of 97%–100%. The average training process time for the training videos
was in the range of 10.2 s to 23.2 s.
The research stems from its goal of identifying the impact of visual management on the strategic acceleration of business organizations and the state of this effect through the knowledge embedding in the Iraqi oil companies. The oil sector was tested, represented by (3) oil companies, and a sample of (151) individuals who participated in activating the visual management, distributed in higher management levels. The research relied on the descriptiveanalytical approach and the questionnaire was a main tool for collecting data and information. The results showed that visual management positively affects strategic acceleration. Moreover, This effect is amplified by the mediating role played by Embedding Knowledge.
The primary aim of this research was to study visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball. A total of 20 volleyball players of Baghdad participated in this study. The sample was homogeneous in terms of height, weight and age of the players. The tests used in the present study were: 1) Visual Spatial Attention Test. 2) Volleyball Spike Test. Based on the findings of the study, the researcher concluded that visual spatial attention has a significant impact on the accuracy of the diagonal spike in volleyball.
This study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
... Show Moreمفهوم معامل الارتباط كمقياس يربط بين متغيرين هذا يجلب انتباهنا إلى موضوع الإحصاء في كل المستويات. أكثر من ذلك هناك ثلاث نقاط خاصة هي اعتيادياً نشدد عليها كما يأتي:-
(1 معامل الارتباط هو الدليل المعياري والذي قيمته لا تعتمد على قياسات
المتغيرات الأصلية.
(2قيمته تقع في المدى] 1,1-[ .
&nb
... Show MoreThe purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreBy definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreDetecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show More