Internet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-configuring mesh network in IoT sensor devices for better independent data collection quality. The research conducted in this paper is to build a mesh network using NodeMCU ESP 8266 and NodeMCU ESP 32 with two types of sensor, DHT 11 and DHT 22. Hence, the work here has evaluated on the delay performance metric in Line-of-Sight (LoS) and Non-Line-of-Sight (nLos) situation based on different network connectivity. The results give shorter delay time in LoS condition for all connected nodes as well as when any node fail to function in the mesh network compared to nLoS condition. The paper demonstrates that the IoT sensor devices composing the mesh network is a must to leverage the link communication performance for data collection in order to be used in IoT-based application such as fertigation system. It will certainly make a difference in the industry once being deployed on large scale in the IoT world and make the IoT more accessible to a wider audience.
Oryza sativa japonica (ofada rice) is largely grown in Aramoko, Abakaliki and Ofada are communities and consumed by both the poor and rich in Nigeria. A total of twenty ofada rice farmlands were identified in each study area and rice samples were randomly collected, thoroughly mixed to make a representative sample from each farmland. Soil samples were collected in each farm to a depth of 5-15cm from at least eight different points and thoroughly mixed together to form a representative sample. The samples were thereafter taken to the laboratory for preparation and spectroscopic analysis. A well-calibrated NaI(Tl) gamma-ray detector was used in spectrometric analysis of the samples and descriptive statistics was used to analyze th
... Show MoreThis work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show MoreAbstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
In this work, PAni nanofibers (NFs) are successfully synthesized via hydrothermal method. The structural, surface morphological, optical, electrical and H2S gas sensing properties have been investigated for PAni thin films deposited by spin coating technique. The XRD pattern reveals crystalline nature of PAni NFs with crystallite size of 9.2 nm. The SEM image of Polyaniline clearly indicates that the polymer possesses nanofiber like structure. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc’s equation. Intense hotoluminescence (PL) peaks at 309, 340 and 605 nm are observed. The electrical properties such as D.C. conductivity and Hall effect have been studied wher
... Show MoreOne of the principle concepts to understand any hydrocarbon field is the heterogeneity scale; This becomes particularly challenging in supergiant oil fields with medium to low lateral connectivity and carbonate reservoir rocks.
The main objectives of this study is to quantify the value of the heterogeneity for any well in question, and propagate it to the full reservoir. This is a quite useful specifically prior to conducting detailed water flooding or full field development studies and work, in order to be prepared for a proper design and exploitation requirements that fit with the level of heterogeneity of this formation.