Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
The research of three-based financial indicators to create value for shareholders, have been identified research problem in a number of the questions revolved around the extent to which it can express its based performance metrics to create value for the essence and the reality of the surveyed enterprises performance, Can the departments surveyed companies to choose the scale or the most harmonizing index and an expression of the actual performance of the company, has the goal of research is to diagnose the strengths and weaknesses in the performance of the surveyed enterprises through the use of a number of based on the concept of creating economic value and the search for the most suitable indicator to the reality of the perfor
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MorePvcABCD are cluster of genes found in Pseudomonas aeruginosa. The research was designed to examine the relationship between the pvc genes expression and cupB gene, which plays a crucial role in the development of biofilm, and rhlR, which regulates the expression of biofilm-related genes, and to investigate whether the pvc genes form one or two operons. The aims were achieved by employing qRT-PCR technique to measure the gene expression of genes of interest. It was found that out of 25 clinical isolates, 21 isolates were qualified as P.aeruginosa. Amongst, 18(85.7%) were evaluated as biofilm producers, 10 (47.6%), 5 (23.8%), and 3 (14.2%) were evaluated as strong, moderate and weak producers respectively, while, 3 (14.2%) were considered
... Show MoreThis research aims to the possibility of evaluating the strategic performance of the State Board for Antiquities and Heritage (SBAH) using a balanced scorecard of four criteria (Financial, Customers, Internal Processes, and Learning and Growth). The main challenge was that the State Board use traditional evaluation in measuring employee performance, activities, and projects. Case study and field interviews methodology has been adopted in this research with a sample consisting of the Chairman of the State Board, 6 General Managers, and 7 Department Managers who are involved in evaluating the strategic performance and deciding the suitable answers on the checklists to analyze it ac
... Show MoreAn Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreData generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreThe main purpose of the paper is to identify the controllability of an existing production system; yogurt production line in Abu Ghraib Dairy Factory which has several machines of food processing and packing that has been studied. Through the starting of analysis, instability in production has been found in the factory. The analysis is built depending on experimental observation and data collection for different processing time of the machines, and statistical analysis has been conducted to model the production system. Arena Software is applied for simulating and analyzing the current state of the production system, and results are expanded to improve the system production and efficiency. Research method is applied to contribute in knowi
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
The aim of this study was to provide an overall assessment to the efficiency of the Iraq stocks exchanges (ISE) through specifying well –known models .First, Fama's efficient market hypothesis as a contrary concept to the random walk hypothesis, was performed and it has been found that ISE follows the random process, so the price of the shares can't be predicated on the basis of past information. Second,we use a multifactor model, which so named multiple regression, to explore the link between ISE and the main economic indicators. our empirical analysis finds that every weak associations exists between major ISE measures and main economic indicators.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show More