Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
The objective of the research is to evaluate the risk management practices of the variables (risk management structure, risk management methods, key components of risk management) and their relation to the principled behavior of managers behavior(innovation, proactive, risk acceptance) By adopting the questionnaire as a main tool in collecting data from managers in the National and raq insurance companies of (50) officials Department manager, department administrator, unit administrator, and analyzed their answers using the SPSS In calculating arithmetic mean, standard deviation, percentage weight and simple correlation coefficient. The most prominent conclusions were:1.There is a positive trend in the sample in both companies and a high
... Show MoreBackground Molluscum contagiosum is skin disease caused by the molluscum contagiosum virus (MCV) usually causing one or more small dome shaped umbilicated papules with symptoms that maybe self-resolve. MCV was once a disease primarily of children, but it has evolved to become a sexually transmitted disease in adults. It is believed to be a member of the pox virus family. In addition to the classic presentation of the disease; it can also come in different clinical forms that simulate large number of dermatolological disease.
Objective: To study different clinical forms of Molluscum contagiosum presentation in different age groups of Iraqi patients.
Method:This clinical descriptive study was performed in the outpatient department of
The semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreHuman beings are starting to benefit from the technology revolution that witness in our time. Where most researchers are trying to apply modern sciences in different areas of life to catch up on the benefits of these technologies. The field of artificial intelligence is one of the sciences that simulate the human mind, and its applications have invaded human life. The sports field is one of the areas that artificial intelligence has been introduced. In this paper, artificial intelligence technology Fast-DTW (Fast-Dynamic Time Warping) algorithm was used to assess the skill performance of some karate skills. The results were shown that the percentage of improvement in the skill performance of Mai Geri is 100%.
This research aims to clarify the role of Information Technology Competency (ITC) with dimensions' (IT Usage, IT Knowledge, and IT Operations) as an independent variable in the activation of Human Resources Management Practices (HRM Practices) as a dependent variable with dimensions' (Training and Development, Recruitment, Job Design, and Performance appraisal). Based on this, the correlation and effect relationships between the independent and dependent variables are determined by formulating two main hypotheses. There are a significant relationship and effect of IT competency with HRM practices within the dimensions. Furthermore, the scope and population of this research are the Informatics and Communications P
... Show MoreIn unpredicted industrial environment, being able to adapt quickly and effectively to the changing is key in gaining a competitive advantage in the global market. Agile manufacturing evolves new ways of running factories to react quickly and effectively to changing markets, driven by customized requirement. Agility in manufacturing can be successfully achieved via integration of information system, people, technologies, and business processes. This article presents the conceptual model of agility in three dimensions named: driving factor, enabling technologies and evaluation of agility in manufacturing system. The conceptual model was developed based on a review of the literature. Then, the paper demonstrates the agility
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
In this paper, the using of Non-Homogenous Poisson Processes, with one of the scientific and practical means in the Operations Research had been carried out, which is the Queuing Theory, as those operations are affected by time in their conduct by one function which has a cyclic behavior, called the (Sinusoidal Function). (Mt / M / S) The model was chosen, and it is Single Queue Length with multiple service Channels, and using the estimating scales (QLs, HOL, HOLr) was carried out in considering the delay occurring to the customer before his entrance to the service, with the comparison of the best of them in the cases of the overload.
Through the experiments
... Show MoreIn the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show MoreThis work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show More