Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show MoreThis study was for searching for Cholera Bacteria serotype which causes epidemiology Cholera in the 2007 in a fast method which contains (Rapid Visual Test) (Crystal V.C.) which was used for the first time in Iraq to diagnosis of Cholera Bacteria & compared with the traditional bacteriology method. The Cholera disease is one of the most dangerous epidemiological diseases which lead to death with a percentage of (50 – 70) % in the severe cases for untreated patients . For this purpose, 100 samples of stool from the patients from a (13) hospitals in Baghdad Governorate in the period from August to the end of December. The Cholera was diagnosis in two methods, 1st method was the fast method using the nitrocellulose which is coated with anti-
... Show MoreThis study aims to identify the teaching problems that teachers of students with intellectual disabilities face, in addition to exploring the solutions suggested by them in order to overcome such problems or challenges. The researchers used a qualitative approach in order to understand the teachers' perceptions about these problems in a more in-depth way. The interview tools (in-depth and semi-structured interviews) were used to collect data from (3) female teachers from special education programs in the Asir region. The results revealed a number of themes including problems related to students, teachers and the teaching methods they use, curricula, school environment, and school administration. Moreover, the results indicated that famil
... Show MoreThis work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreАннотация
Взгляд на пол как на комплексное социальное отношение означает,что роль женщины в истории следует рассматривать не просто как новый для исторической науки предмет исследования, а как обойденный вниманием ученых вопрос об отношениях между людьми или группами людей.
Женщина играет особую и важную роль в обществе , даже скажут ,что она половина нашего общества ,поэтому она яв
... Show MoreAwsaj (Lycium barbarum) is a plant belong to family Solanaceae serves as a good source of bioactive compounds like phytosterols which have many important biological activity. Literature survey available so far revealed that there was no studies about Iraqi wild Awsaj phytosterols especially B-sitosterol, there for the objective of this study was to examine the efficiency of ultrasound assisted extraction (probe and bath) as compared to the conventional (Soxhlet) extraction method for extraction of phytosterols especially B-sitosterol from fruits, leaves, stems and roots of Iraqi wild Awsaj plant. This goal was achieved by comparing the extraction mass yield, also by a quick and easy approach for identification and quantification of bioac
... Show MoreThe article discusses the spatial analysis of the chemical soil properties that is a key component of the agriculture ecosystem based on satellite images. The main objective of the present study is to measure the chemical soil properties (total dissolved salts (TDS), Electrical conductivity (EC), PH, and) and the spatial variability. On 13 November 2020 (wet season), a total of 12 soil samples were collected in the field through random sampling in the Sanam mountain-Al Zubair region south of Basra province, to contain its soil samples components of minerals and precious elements such as silica and sulfur. From experimental results, the soil sample in the sixth position has the highest concentration of TDS values, reached (5798.4
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show More