The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items with 106 units, and large data which had 20 size-types of items with 110 units. Moreover, it was also compared with another algorithm called Gravitational Search Algorithm (GSA). According to the computational results in those example cases, it can be concluded that higher number of population and iterations can bring higher chances to obtain a better solution. Finally, TLBO shows better performance in solving the 3-D packing problem compared with GSA.
Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreIt is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin
In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
It has been shown in ionospheric research that calculation of the total electron content (TEC) is an important factor in global navigation system. In this study, TEC calculation was performed over Baghdad city, Iraq, using a combination of two numerical methods called composite Simpson and composite Trapezoidal methods. TEC was calculated using the line integral of the electron density derived from the International reference ionosphere IRI2012 and NeQuick2 models from 70 to 2000 km above the earth surface. The hour of the day and the day number of the year, R12, were chosen as inputs for the calculation techniques to take into account latitudinal, diurnal and seasonal variation of TEC. The results of latitudinal variation of TE
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show More
Abstract
This study aims to identify the degree to which the first cycle teachers use different feedback patterns in the e-learning system in addition to the differences in the degree of use according to specialization, teaching experience, and in-service training in the field of classroom assessment, as well as the interaction between them. The study sample consisted of (350) female teachers of the first cycle in government schools in Muscat Governorate for the academic year 2020/2021. The study used a questionnaire that contained four different patterns of feedback, which are reinforcement, informative, corrective, and interpretive feedback. The psychometric properties of the que
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show More