A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a new dataset. In the second part (online processing), the client sends the encrypted image to the server, which depends on the CNN model trained to extract features of the sent image. Next, the extracted features are compared with the stored features using a Hamming distance method to retrieve all similar images. Finally, the server encrypts all retrieved images and sends them to the client. Deep-learning results on plain images were 97.94% for classification and 98.94% for retriever images. At the same time, the NIST test was used to check the security of CKKS when applied to Canadian Institute for Advanced Research (CIFAR-10) dataset. Through these results, researchers conclude that deep learning is an effective method for image retrieval and that a CKKS method is appropriate for image privacy protection.
With the great development in the field of the Internet, the talk about the new media and its implications began, And its interactive services have made the future of media material sometimes participating in it and manufacturing it at other times,
the public is seeking information and choosing the appropriate ones, as well as exchanging messages with the sender after what the role of the receiver is just receiving information only.
This study aims to demonstrate the effects of using digital media in various forms and types to construct the value system of Iraqi society through the identification of the following aims:
Identify the most popular digital media for the Iraqi public in their daily lives on the Internet.
Identify
A microbial study conducted for a number of flour samples (30 samples) Uses in the bakery ovens in various areas of the city of Baghdad, by used the conventional methods used in laboratories in microbial tests and compared with the modern techniqueby usedof BacTrac Device 3400 equipped from SY-LAB Impedance analysersAustrian company.The results of two ways showed (The conventional way and BacTrac Device test)that the total counts of aerobic bacteria, coliform bacteria, StaphylococcusSpp. bacteria, Bacillus cereus bacteria and yeasts and molds,Most of them were within the permissible borders in the Iraqi standard for grain and its products With free samples from SalmonellaSpp. bacteria, and that the screening by BacTrac device are shorten
... Show MoreIncreased diseases and obesity currently due to increased production and excessive consumption of foods manufactured from non-food sweeteners without attention to the risk of consuming those additional high calories due to consuming these refreshing products such as juices and other various drinks, especially in the summer season by most segments of Iraqi society, especially workers, children and school students the aim of this study. Therefore, the study designed to replace sucrose with 0.03, 0.04 and 0.05% of each of the white stevia crystals and milled dry stevia leaves in the laboratory manufacture of juices and its effect on the general and sensory characteristics and the extent of their acceptability among the specialized r
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreKE Sharquie, AA Noaimi, MM Al-Salih, Saudi Medical Journal, 2008 - Cited by 56
The approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show More