Preferred Language
Articles
/
bsj-6550
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption
...Show More Authors

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a new dataset. In the second part (online processing), the client sends the encrypted image to the server, which depends on the CNN model trained to extract features of the sent image. Next, the extracted features are compared with the stored features using a Hamming distance method to retrieve all similar images. Finally, the server encrypts all retrieved images and sends them to the client. Deep-learning results on plain images were 97.94% for classification and 98.94% for retriever images. At the same time, the NIST test was used to check the security of CKKS when applied to Canadian Institute for Advanced Research (CIFAR-10) dataset. Through these results, researchers conclude that deep learning is an effective method for image retrieval and that a CKKS method is appropriate for image privacy protection.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
Extraction of heavy metals from contaminated soils using EDTA and HCl
...Show More Authors

The present study examines the extraction of lead (Pb), cadmium (Cd) and nickel (Ni) from   a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA) and hydrochloric acid (HCl) solution were used as extractants.  Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni ).  A set of batch experiments were carried out at different conditions of  extractant concentration , contact time, pH and agitation speed. The results  showed  that the  maximum removal efficiencies  of (Cd, Pb  and Ni ) were (97, 88 and 24 )&nbs

... Show More
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Medical Journal Of Babylon
Characterization and antibacterial activity of biogenic iron nanoparticles using Proteus mirabilis
...Show More Authors
Abstract<sec> <title>Background:

The green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.

Objectives:

The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.

Materials and Methods: ... Show More
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Mon May 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparison hybrid techniques-based mixed transform using compression and quality metrics
...Show More Authors

Image quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Monitoring of south Iraq marshes using classification and change detection techniques
...Show More Authors

Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Expanded Pipe using Rigid Conical Shape
...Show More Authors

The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (11)
Crossref (5)
Scopus Crossref
Publication Date
Mon Sep 01 2014
Journal Name
Journal Of Baghdad College Of Dentistry
Apexification and Periapical Healing of Immature Teeth Using Mineral Trioxide Aggregate
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref