I attended the new chief base of bilateral interaction Para Amino like 1 Phenyl 4 Bayrosolin 5 Online with Alsalesl Aldehid someone Allicand by careful analysis of the elements and infrared spectrum
Complexes of some metal ions ( Mn(I? ) , Co(??) , Ni(??) ,Cu (??) , Zn(I?) , Cd (??) , and Hg(??) ) with 8-hydroxyquinoline (Oxine) and 2- Picoline (2-pic ) have been synthesized and characterized on the basis of their FT-IR. and Uv-visible spectroscopy ,atomic absorption molar conductivity measurements and magnetic susceptibility ,from the results obtained the following general formula has been given for prepared complexes [M (oxine)2 (2-pic)2]where M = M(??) = Mn , Co , Ni , Cu , Zn , Cd , Hg(oxine)- = ionic ligand 8-hydroxyquinolin (oxinato)(2- pic) = 2- picoline
Complexes reaction of Fe+2, Cd+2, Hg+2 and Ag+ with the 2-thiotolylurea were prepared in ethanolic medium with the (1:1) M:L ratio yielded a series of neutral complexes. The prepared complexes were characterized using flame atomic absorption, micoelemental analysis (C.H.N), chloride content (Mohr Method) , FT.IR and UV-Vis spectroscopic, as well as magnetic susceptibility and conductivity measurement. From the above data, the proposed molecular structure for Fe+2, Cd+2 and Hg+2 complexes are tetrahedral geometry while Ag+ complex is trigonal structure.
Coupling reaction of 4-nitroaniline with 3-aminobenzoic acid provided the corresponding bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1H-NMR, FT-IR, and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with Y(III) and La(III) metal ions in 1:3 M:L ratio in aqueous ethanol at optimum pH yielded a series of neutral complexes with the general formula of [M(L)3]. The prepared complexes were characterized by flame atomic absorption, Elemental Analysis (C, H, N), FT-IR, and UV-Vis spectroscopic methods, as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods; Beer's law obeyed over a concentration range o
... Show MoreNew metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show MoreNew Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N, N'E, N, N'E)-N, N'-(cyclohexane-1,3-diylidene)bis(4- fluor
... Show MoreThe aim of the work is the synthesis and characterization of the tridentate Schiff base (HL) containing (N and O) as donor atoms type (ONO). The ligand is: (HL) phenyl 2-(2-hydroxybenzylidenamino)benzoate This ligand was prepared by the reaction of (phenyl 2-aminobenzoate) with salicylaldehyde under reflux in ethanol and few drops of glacial acetic acid which gave the ligand (HL). The prepared ligand was characterized by (FT IR,UV–Vis) spectroscopy, Elemental analysis of carbon, hydrogen and nitrogen (C.H.N.) and melting point. The ligand was reacted with some metal ions under reflux in ethanol with (1 metal :2 ligand )mole ratio which gave complexes of the general formula: Pr III , Cr and III La III [M(L)2]Cl , M = Products were found to
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes.
Four metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes. Keywords: Mixed ligand complexes, spectral studies, 2-aminophenol, tributylphosphine.
The main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks obser