Two quantitative, environment-friendly and easily monitored assays for Ni (II) and Co (III) ions analysis in different lipstick samples collected from 500-Iraqi dinars stores located in Baghdad were introduced. The study was based on the reaction of nickel (II) ions with dimethylglyoxime (DMG) reagent and the reaction of cobalt (III) ions with 1-nitroso-2-naphthol (NN) reagent to produce colored products. The color change was measured by spectrophotometric method at 565 nm and 430 nm for Ni and Co, respectively, with linear calibration graphs in the concentration range 0.25-100 mg L-1 (Ni) and 0.5-100 mg L-1 (Co) and LOD and LOQ of 0.11 mg L-1 and 0.36 mg L-1 (Ni), and 0.15 mg L-1 and 0.49 mg L-1 (Co). The UV/VIS data was compared to the results obtained by a novel microfluidic paper-based analytical device (µPAD) platform offering in-situ and cost-effect assay with a similar calibration graph with LOD and LOQ of 0.21 mg L-1 and 0.70 mg L-1 (Ni), and 0.22 mg L-1 and 0.75 mg L-1 (Co). The analysis of variance (ANOVA) indicated no significant difference between the UV/VIS, µPAD, and standard atomic absorption spectrometry (AAS) assay Ftab= 3.46 is much higher than FStat = 0.13 (Ni) and Ftab= 3.46 is much higher than FStat = 0.02 (Co). Also, a good correlation between results via the three methods was found. Thus, the µPAD platform offers a solid base for providing valuable information outside centralized laboratories.
This study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreThe extract of fig fruit has shown significant medical usefulness in various fields. The entrance of nanotechnology into the field of medicinal and pharmacology has shown remarkable advantages. Plants contain diverse molecules thatcan reduce metals, and provide a safe, eco-friendly approach for synthesizing nanoparticles. Iron oxide nanoparticles (IONPs) have been reported to possess an antimicrobial effect against some strains of bacteria and moulds. We have aimed to synthesize IONPs from fig fruit extract and investigate the influence of fig extract and IONPs in wound healing of mice. UV-Vis spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy were used to characterize the IONPs that were produced
... Show MoreMethicillin resistant Staphylococcus aureus (MRSA) is the most common pathogenic bacteria in the hospitals and communities, the ability to form biofilm is considered the main cause of Staphylococcus pathogenicity since it provides resistance to both antibiotics and host immune response, so this study was aimed to evaluate the biofilms formation and its association with antibiotic resistance in clinical isolates of MRSA, in order to achieve this aim, 237 samples were collected from different patients with wounds infections after surgeries and samples from operations galleries from varies hospitals in Baghdad ,68 isolates out of 237 were subjected to Staphylococcus aureus according to conventional meth
... Show MoreThis work aims to fabricate two types of plasmonic nanostructures by electrical exploding wire (EEW) technique and study the effects of the different morphologies of these nanostructures on the absorption spectra and Surface-Enhanced Raman Scattering (SERS) activities, using Rhodamine 6G as a probe molecule. The structural properties of these nanostructures were examined using X-Ray diffraction (XRD). The morphological properties were examined using field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM). The absorption spectra of the mixed R6G laser dye (concentration 1×10-6 M) with prepared nanostructures were examined by double beam UV-Vis Spectrophotometer. The Raman spe
... Show MoreThe effects of short-range correlation on elastic Coulomb (charge) form factors, charge density distributions as well as root mean square charge radii of various nuclei (for instance, 46, 48, 50Ti, 52, 54Cr, 56, 58Fe, and 72, 74, 76Ge nuclei) are examined. The one- and two body terms of the cluster expansion together with the single-particle harmonic oscillator wave functions are utilized. For the purpose of embedding these effects into the formulae of charge density and form factor we employ the correlation function of Jastrow-type. These formulae depend upon the short-range correlation parameter (which instigates from the Jastr
... Show MoreThis paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreIn this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s