Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopting a combination of Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT). The combination of these two signal processing techniques is gaining lots of interest in the field of speaker and speech recognition. As a cough recognition approach, we found it well-performing, as it generates and utilizes an efficient minimum number of features. Mean and median frequencies, which are known to be the most useful features in the frequency domain, are applied to generate an effective statistical measure to compare the results. The hybrid structure of DWT and SVD, adopted in this approach adds to its efficiency, where a 200 times reduction, in terms of the number of operations, is achieved. Despite the fact that symptoms of the infected and non-infected people used in the study are having lots of similarities, diagnosis results obtained from the application of the proposed approach show high diagnosis rate, which is proved through the matching with relevant PCR tests. The proposed approach is open for more improvements with its performance further assured by enlarging the dataset, while including healthy people.
In this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreIncremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreThis paper deals the prediction of the process of random spatial data of two properties, the first is called Primary variables and the second is called secondary variables , the method that were used in the prediction process for this type of data is technique Co-kriging , the method is usually used when the number of primary variables meant to predict for one of its elements is measured in a particular location a few (because of the cost or difficulty of obtaining them) compare with secondary variable which is the number of elements are available and highly correlated with primary variables, as was the&nbs
... Show MoreCluster analysis (clustering) is mainly concerned with dividing a number of data elements into clusters. The paper applies this method to create a gathering of symmetrical government agencies with the aim to classify them and understand how far they are close to each other in terms of administrative and financial corruption by means of five variables representing the prevalent administrative and financial corruption in the state institutions. Cluster analysis has been applied to each of these variables to understand the extent to which these agencies are close to other in each of the cases related to the administrative and financial corruption.
Field experiments were carried out for the autumn season 2022- 2021 in the field of College of Agricultural Engineering Sciences - University of Baghdad - Jadiriyah Complex –Station A- to study a combination of organic fertilizer (Vermicompost) and cow manure as well as a control treatment (soil only) intertwined with Spraying with silicon, calcium and distilled water (control) in the growth and production of three cultivars of beet (Cylindra, Dark Red, Red) within the design of Completely Randomized Block Design at three replications, The number of treatments was 9 for each replicate. The means were compared according to the least significant difference (L.S.D) at a probability lev
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreObjective: The study aimed to assess Leucine-rich alpha-2-glycoprotein-1 biomarker serum level in hospitalized COVID-19 patients. Methods: The case control study from multi-centers in Baghdad included 45 adult patients (19 females and 26 males) with COVID-19, diagnosed with a positive real-time reverse transcription polymerase chain reaction and excluded negative RT-PCR for COVID-19 and comorbidity conditions. Second group, was 43 control (20 females and 23 males). Results: This study found a decrease Leucine-rich alpha-2-glycoprotein-1 biomarker serum level in these patients and a significant difference in D. dimer, neutrophil count, lymphocyte count, and the neutrophil-lymphocyte ratio between the patients and controls at a P valu
... Show MoreThe rapid spread of the COVID-19 coronavirus in 2019 infected many people, primarily affecting the respiratory system. Both COVID-19 and type 2 diabetes have been associated with numerous risks that have become life-threatening. The study studied the link between galectin levels and some clinical characteristics in Iraqis with type 2 diabetes and COVID-19 against those without diabetes. The study included 120 patients and healthy men. Three groups were formed for this study depending on the initial mutant cell line: 80 samples of individuals with type 2 diabetes, aged 40–60 years, with and without COVID-19, were included in each of the first and second groups. The control group consisted of 40 research participants who were matched for ag
... Show More