Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopting a combination of Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT). The combination of these two signal processing techniques is gaining lots of interest in the field of speaker and speech recognition. As a cough recognition approach, we found it well-performing, as it generates and utilizes an efficient minimum number of features. Mean and median frequencies, which are known to be the most useful features in the frequency domain, are applied to generate an effective statistical measure to compare the results. The hybrid structure of DWT and SVD, adopted in this approach adds to its efficiency, where a 200 times reduction, in terms of the number of operations, is achieved. Despite the fact that symptoms of the infected and non-infected people used in the study are having lots of similarities, diagnosis results obtained from the application of the proposed approach show high diagnosis rate, which is proved through the matching with relevant PCR tests. The proposed approach is open for more improvements with its performance further assured by enlarging the dataset, while including healthy people.
Coaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show More